首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   642篇
  免费   55篇
  2023年   4篇
  2022年   7篇
  2021年   11篇
  2020年   11篇
  2019年   9篇
  2018年   12篇
  2017年   10篇
  2016年   16篇
  2015年   23篇
  2014年   44篇
  2013年   41篇
  2012年   60篇
  2011年   46篇
  2010年   20篇
  2009年   20篇
  2008年   24篇
  2007年   37篇
  2006年   31篇
  2005年   23篇
  2004年   23篇
  2003年   22篇
  2002年   24篇
  2001年   17篇
  2000年   17篇
  1999年   18篇
  1998年   4篇
  1997年   6篇
  1995年   3篇
  1994年   3篇
  1993年   4篇
  1992年   9篇
  1991年   11篇
  1990年   9篇
  1989年   10篇
  1988年   10篇
  1987年   6篇
  1986年   3篇
  1985年   3篇
  1984年   7篇
  1982年   4篇
  1981年   4篇
  1980年   3篇
  1979年   4篇
  1978年   2篇
  1977年   2篇
  1976年   2篇
  1975年   5篇
  1974年   3篇
  1971年   2篇
  1967年   2篇
排序方式: 共有697条查询结果,搜索用时 31 毫秒
91.
Cystatin C (CysC) expression in the brain is elevated in human patients with epilepsy, in animal models of neurodegenerative conditions, and in response to injury, but whether up-regulated CysC expression is a manifestation of neurodegeneration or a cellular repair response is not understood. This study demonstrates that human CysC is neuroprotective in cultures exposed to cytotoxic challenges, including nutritional-deprivation, colchicine, staurosporine, and oxidative stress. While CysC is a cysteine protease inhibitor, cathepsin B inhibition was not required for the neuroprotective action of CysC. Cells responded to CysC by inducing fully functional autophagy via the mTOR pathway, leading to enhanced proteolytic clearance of autophagy substrates by lysosomes. Neuroprotective effects of CysC were prevented by inhibiting autophagy with beclin 1 siRNA or 3-methyladenine. Our findings show that CysC plays a protective role under conditions of neuronal challenge by inducing autophagy via mTOR inhibition and are consistent with CysC being neuroprotective in neurodegenerative diseases. Thus, modulation of CysC expression has therapeutic implications for stroke, Alzheimer''s disease, and other neurodegenerative disorders.  相似文献   
92.
93.
Lachos VH  Bandyopadhyay D  Dey DK 《Biometrics》2011,67(4):1594-1604
HIV RNA viral load measures are often subjected to some upper and lower detection limits depending on the quantification assays. Hence, the responses are either left or right censored. Linear (and nonlinear) mixed-effects models (with modifications to accommodate censoring) are routinely used to analyze this type of data and are based on normality assumptions for the random terms. However, those analyses might not provide robust inference when the normality assumptions are questionable. In this article, we develop a Bayesian framework for censored linear (and nonlinear) models replacing the Gaussian assumptions for the random terms with normal/independent (NI) distributions. The NI is an attractive class of symmetric heavy-tailed densities that includes the normal, Student's-t, slash, and the contaminated normal distributions as special cases. The marginal likelihood is tractable (using approximations for nonlinear models) and can be used to develop Bayesian case-deletion influence diagnostics based on the Kullback-Leibler divergence. The newly developed procedures are illustrated with two HIV AIDS studies on viral loads that were initially analyzed using normal (censored) mixed-effects models, as well as simulations.  相似文献   
94.
In the last decade, several influential scholars have rigorously worked on the impact of neoliberal globalization on the poor in the cities of the South. But they have yet to provide a comprehensive account of how and why some groups in the margins are seen to successfully negotiate with the new modes of governing populations and increase their visibility as a “category,” while some groups fail to do so. This paper seeks to bridge this research gap by comparing a successful and a failed mobilization in Calcutta. In both cases, use of the footpath has been central. The paper shows how the success of the hawkers in claiming the footpath is tied to the marginalization of the claims of the pavement dwellers that has (a) homogenized the representation of the footpath as only used by pedestrians and hawkers and (b) led to the elision of the pavement dwellers as a governmental category. The paper argues that by arrogating to themselves an archival function—which is conventionally associated with the governmental state—sections of population like the hawkers can become successful in their negotiations with the government.  相似文献   
95.
KSHV envelope glycoproteins interact with cell surface heparan sulfate and integrins, and activate FAK, Src, PI3-K, c-Cbl, and Rho-GTPase signal molecules in human microvascular dermal endothelial (HMVEC-d) cells. c-Cbl mediates the translocation of virus bound α3β1 and αVβ3 integrins into lipid rafts (LRs), where KSHV interacts and activates EphrinA2 (EphA2). EphA2 associates with c-Cbl-myosin IIA and augmented KSHV-induced Src and PI3-K signals in LRs, leading to bleb formation and macropinocytosis of KSHV. To identify the factor(s) coordinating the EphA2-signal complex, the role of CIB1 (calcium and integrin binding protein-1) associated with integrin signaling was analyzed. CIB1 knockdown did not affect KSHV binding to HMVEC-d cells but significantly reduced its entry and gene expression. In contrast, CIB1 overexpression increased KSHV entry in 293 cells. Single virus particle infection and trafficking during HMVEC-d cell entry was examined by utilizing DiI (envelope) and BrdU (viral DNA) labeled virus. CIB1 was associated with KSHV in membrane blebs and in Rab5 positive macropinocytic vesicles. CIB1 knockdown abrogated virus induced blebs, macropinocytosis and virus association with the Rab5 macropinosome. Infection increased the association of CIB1 with LRs, and CIB1 was associated with EphA2 and KSHV entry associated signal molecules such as Src, PI3-K, and c-Cbl. CIB1 knockdown significantly reduced the infection induced EphA2, Src and Erk1/2 activation. Mass spectrometry revealed the simultaneous association of CIB1 and EphA2 with the actin cytoskeleton modulating myosin IIA and alpha-actinin 4 molecules, and CIB1 knockdown reduced EphA2''s association with myosin IIA and alpha-actinin 4. Collectively, these studies revealed for the first time that CIB1 plays a role in virus entry and macropinocytosis, and suggested that KSHV utilizes CIB1 as one of the key molecule(s) to coordinate and sustain the EphA2 mediated signaling involved in its entry, and CIB1 is an attractive therapeutic target to block KSHV infection.  相似文献   
96.
97.
Francisella tularensis is a Gram-negative, facultative intracellular pathogen that replicates in the cytosol of macrophages and is the causative agent of the potentially fatal disease tularemia. A characteristic feature of F. tularensis is its limited proinflammatory capacity, but the mechanisms that underlie the diminished host response to this organism are only partially defined. Recently, microRNAs have emerged as important regulators of immunity and inflammation. In the present study we investigated the microRNA response of primary human monocyte-derived macrophages (MDMs) to F. tularensis and identified 10 microRNAs that were significantly differentially expressed after infection with the live vaccine strain (LVS), as judged by Taqman Low Density Array profiling. Among the microRNAs identified, miR-155 is of particular interest as its established direct targets include components of the Toll-like receptor (TLR) pathway, which is essential for innate defense and proinflammatory cytokine production. Additional studies demonstrated that miR-155 acted by translational repression to downregulate the TLR adapter protein MyD88 and the inositol 5′-phosphatase SHIP-1 in MDMs infected with F. tularensis LVS or the fully virulent strain Schu S4. Kinetic analyses indicated that miR-155 increased progressively 3-18 hours after infection with LVS or Schu S4, and target proteins disappeared after 12–18 hours. Dynamic modulation of MyD88 and SHIP-1 was confirmed using specific pre-miRs and anti-miRs to increase and decrease miR-155 levels, respectively. Of note, miR-155 did not contribute to the attenuated cytokine response triggered by F. tularensis phagocytosis. Instead, this microRNA was required for the ability of LVS-infected cells to inhibit endotoxin-stimulated TNFα secretion 18–24 hours after infection. Thus, our data are consistent with the ability of miR-155 to act as a global negative regulator of the inflammatory response in F. tularensis-infected human macrophages.  相似文献   
98.
Malfunctions in regulatory pathways that control cell size are prominent in pathological cardiac hypertrophy. Here, we show annexin A6 (Anxa6) to be a crucial regulator of atrial natriuretic peptide (ANP)-mediated counterhypertrophic responses in cardiomyocytes. Adrenergic stimulation of H9c2 cardiomyocytes by phenylephrine (PE) increased the cell size with enhanced expression of biochemical markers of hypertrophy, concomitant with elevated expression and subcellular redistribution of Anxa6. Stable cell lines with controlled increase in Anxa6 levels were protected against PE-induced adverse changes, whereas Anxa6 knockdown augmented the hypertrophic responses. Strikingly, Anxa6 knockdown also abrogated PE-induced juxtanuclear accumulation of secretory granules (SG) containing ANP propeptides (pro-ANP), a signature of maladaptive hypertrophy having counteractive functions. Mechanistically, PE treatment prompted a dynamic association of Anxa6 with pro-ANP-SG, parallel to their participation in anterograde traffic, in an isoform-specific fashion. Moreover, Anxa6 mutants that failed to associate with pro-ANP hindered ANP-mediated protection against hypertrophy, which was rescued, at least partially, by WT Anxa6. Additionally, elevated intracellular calcium (Ca2+) stimulated Anxa6-pro-ANP colocalization and membrane association. It also rescued pro-ANP translocation in cells expressing an Anxa6 mutant (Anxa6ΔC). Furthermore, stable overexpression of Anxa6T356D, a mutant with superior flexibility, provided enhanced protection against PE, compared with WT, presumably due to enhanced membrane-binding capacity. Together, the present study delivers a cooperative mechanism where Anxa6 potentiates ANP-dependent counterhypertrophic responses in cardiomyocytes by facilitating regulated traffic of pro-ANP.  相似文献   
99.
Human enterocytes are primary targets of infection by invasive bacterium Salmonella Typhimurium, and studies using nonintestinal epithelial cells established that S. Typhimurium activates Rho family GTPases, primarily CDC42, to modulate the actin cytoskeletal network for invasion. The host intracellular protein network that engages CDC42 and influences the pathogen's invasive capacity are relatively unclear. Here, proteomic analyses of canonical and variant CDC42 interactomes identified a poorly characterized CDC42 interacting protein, CDC42EP1, whose intracellular localization is rapidly redistributed and aggregated around the invading bacteria. CDC42EP1 associates with SEPTIN-7 and Villin, and its relocalization and bacterial engagement depend on host CDC42 and S. Typhimurium's capability of activating CDC42. Unlike CDC42, CDC42EP1 is not required for S. Typhimurium's initial cellular entry but is found to associate with Salmonella-containing vacuoles after long-term infections, indicating a contribution to the pathogen's intracellular growth and replication. These results uncover a new host regulator of enteric Salmonella infections, which may be targeted to restrict bacterial load at the primary site of infection to prevent systemic spread.  相似文献   
100.

Background  

Riboswitches are a type of noncoding RNA that regulate gene expression by switching from one structural conformation to another on ligand binding. The various classes of riboswitches discovered so far are differentiated by the ligand, which on binding induces a conformational switch. Every class of riboswitch is characterized by an aptamer domain, which provides the site for ligand binding, and an expression platform that undergoes conformational change on ligand binding. The sequence and structure of the aptamer domain is highly conserved in riboswitches belonging to the same class. We propose a method for fast and accurate identification of riboswitches using profile Hidden Markov Models (pHMM). Our method exploits the high degree of sequence conservation that characterizes the aptamer domain.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号