全文获取类型
收费全文 | 642篇 |
免费 | 55篇 |
专业分类
697篇 |
出版年
2023年 | 4篇 |
2022年 | 7篇 |
2021年 | 11篇 |
2020年 | 11篇 |
2019年 | 9篇 |
2018年 | 12篇 |
2017年 | 10篇 |
2016年 | 16篇 |
2015年 | 23篇 |
2014年 | 44篇 |
2013年 | 41篇 |
2012年 | 60篇 |
2011年 | 46篇 |
2010年 | 20篇 |
2009年 | 20篇 |
2008年 | 24篇 |
2007年 | 37篇 |
2006年 | 31篇 |
2005年 | 23篇 |
2004年 | 23篇 |
2003年 | 22篇 |
2002年 | 24篇 |
2001年 | 17篇 |
2000年 | 17篇 |
1999年 | 18篇 |
1998年 | 4篇 |
1997年 | 6篇 |
1995年 | 3篇 |
1994年 | 3篇 |
1993年 | 4篇 |
1992年 | 9篇 |
1991年 | 11篇 |
1990年 | 9篇 |
1989年 | 10篇 |
1988年 | 10篇 |
1987年 | 6篇 |
1986年 | 3篇 |
1985年 | 3篇 |
1984年 | 7篇 |
1982年 | 4篇 |
1981年 | 4篇 |
1980年 | 3篇 |
1979年 | 4篇 |
1978年 | 2篇 |
1977年 | 2篇 |
1976年 | 2篇 |
1975年 | 5篇 |
1974年 | 3篇 |
1971年 | 2篇 |
1967年 | 2篇 |
排序方式: 共有697条查询结果,搜索用时 17 毫秒
1.
Possible involvement of protein phosphorylation in interferon (IFN)-mediated activation of IFN-stimulated gene factor 3 (ISGF3) was investigated. For this purpose, in vivo experiments with specific inhibitors of protein kinases and in vitro experiments with protein phosphatases were carried out. In HeLaM cells, 2-aminopurine, an inhibitor of double-stranded RNA-dependent protein kinase, blocked the induction of ISGF3 gamma subunit but not the activation of ISGF3 alpha subunit. A series of experiments using combinations of protein and RNA synthesis inhibitors and 2-aminopurine indicated that the block elicited by 2-aminopurine was at the level of ISGF3 gamma mRNA synthesis. Activation of ISGF3 alpha, although insensitive to 2-aminopurine, was completely blocked by 10 nM staurosporine, an inhibitor of protein kinase C. On the other hand, even 500 nM staurosporine did not block the induction of ISGF3 gamma. Incubation of cytoplasmic or nuclear extracts of IFN-treated HeLaM cells in vitro with alkaline phosphatase completely eliminated their ability to form the ISGF3 complex but not the ISGF1 complex. Treatment with acid phosphatase, on the other hand, changed the electrophoretic mobility of the ISGF3 complex but did not obliterate it. Complementation experiments revealed that ISGF3 alpha was the alkaline phosphatase-sensitive component of the complex. These results suggest that a protein kinase C-mediated phosphorylation step is involved in ISGF3 alpha activation and a 2-aminopurine-sensitive component is involved in ISGF3 gamma mRNA induction. 相似文献
2.
Omar M. Khdour Indrajit Bandyopadhyay Sandipan Roy Chowdhury Nishant P. Visavadiya Sidney M. Hecht 《Bioorganic & medicinal chemistry》2018,26(12):3359-3369
Friedreich’s ataxia (FRDA) is an autosomal recessive neurodegenerative disorder resulting from reduced expression of the protein frataxin (FXN). Although its function is not fully understood, frataxin appears to help assemble iron sulfur clusters; these are critical for the function of many proteins, including those needed for mitochondrial energy production. Finding ways to increase FXN levels has been a major therapeutic strategy for this disease. Previously, we described a novel series of methylene violet analogues and their structural optimization as potential therapeutic agents for neurodegenerative and mitochondrial disorders. Presently, a series of methylene blue analogues has been synthesized and characterized for their in vitro biochemical and biological properties in cultured Friedreich’s ataxia lymphocytes. Favorable methylene blue analogues were shown to increase frataxin levels and mitochondrial biogenesis, and to improve aconitase activity. The analogues were found to be good ROS scavengers, and able to protect cultured FRDA lymphocytes from oxidative stress resulting from inhibition of complex I and from glutathione depletion. The analogues also preserved mitochondrial membrane potential and augmented ATP production. Our results suggest that analogue 5, emerging from the initial structure of the parent compound methylene blue (MB), represents a promising lead structure and lacks the cytotoxicity associated with the parent compound MB. 相似文献
3.
4.
Background
Inferences about protein function are often made based on sequence homology to other gene products of known activities. This approach is valuable for small families of conserved proteins but can be difficult to apply to large superfamilies of proteins with diverse function. In this study we looked at sequence homology between members of the DJ-1/ThiJ/PfpI superfamily, which includes a human protein of unclear function, DJ-1, associated with inherited Parkinson's disease. 相似文献5.
Miura A Sajan MP Standaert ML Bandyopadhyay G Kahn CR Farese RV 《Biochemistry》2004,43(49):15503-15509
Phosphatidylinositol 3-kinase (PI3K)-dependent activation of atypical protein kinase C (aPKC) is required for insulin-stimulated glucose transport. Although insulin receptor substrate-1 (IRS-1) and IRS-2, among other factors, activate PI3K, there is little information on the relative roles of IRS-1and IRS-2 during aPKC activation by insulin action in specific cell types. Presently, we have used immortalized brown adipocytes in which either IRS-1 or IRS-2 has been knocked out by recombinant methods to examine IRS-1 and IRS-2 requirements for activation of aPKC. We have also used these adipocytes to see if IRS-1 and IRS-2 are required for activation of Cbl, which is required for insulin-stimulated glucose transport and has been found to function upstream of both PI3K/aPKC and Crk during thiazolidinedione action in 3T3/L1 adipocytes [Miura et al. (2003) Biochemistry 42, 14335]. In brown adipocytes in which either IRS-1 or IRS-2 was knocked out, insulin-induced increases in aPKC activity and glucose transport were markedly diminished. These effects of insulin on aPKC and glucose transport were fully restored by retroviral-mediated expression of IRS-1 or IRS-2 in their respective knockout cells. Knockout of IRS-1 or IRS-2 also inhibited insulin-induced increases in Cbl binding to the p85 subunit of PI3K, which, along with IRS-1/2, may be required for activation of PI3K, aPKC, and glucose transport during insulin action in 3T3/L1 adipocytes. These findings provide evidence that directly links both IRS-1 and IRS-2 to aPKC activation in immortalized brown adipocytes, and further suggest that IRS-1 and IRS-2 are required for the activation of Cbl/PI3K during insulin action in these cells. 相似文献
6.
Docosahexaenoic acid up‐regulates both PI3K/AKT‐dependent FABP7–PPARγ interaction and MKP3 that enhance GFAP in developing rat brain astrocytes 下载免费PDF全文
7.
Chirosree Bandyopadhyay Mohanan Valiya-Veettil Dipanjan Dutta Sayan Chakraborty Bala Chandran 《PLoS pathogens》2014,10(2)
KSHV envelope glycoproteins interact with cell surface heparan sulfate and integrins, and activate FAK, Src, PI3-K, c-Cbl, and Rho-GTPase signal molecules in human microvascular dermal endothelial (HMVEC-d) cells. c-Cbl mediates the translocation of virus bound α3β1 and αVβ3 integrins into lipid rafts (LRs), where KSHV interacts and activates EphrinA2 (EphA2). EphA2 associates with c-Cbl-myosin IIA and augmented KSHV-induced Src and PI3-K signals in LRs, leading to bleb formation and macropinocytosis of KSHV. To identify the factor(s) coordinating the EphA2-signal complex, the role of CIB1 (calcium and integrin binding protein-1) associated with integrin signaling was analyzed. CIB1 knockdown did not affect KSHV binding to HMVEC-d cells but significantly reduced its entry and gene expression. In contrast, CIB1 overexpression increased KSHV entry in 293 cells. Single virus particle infection and trafficking during HMVEC-d cell entry was examined by utilizing DiI (envelope) and BrdU (viral DNA) labeled virus. CIB1 was associated with KSHV in membrane blebs and in Rab5 positive macropinocytic vesicles. CIB1 knockdown abrogated virus induced blebs, macropinocytosis and virus association with the Rab5 macropinosome. Infection increased the association of CIB1 with LRs, and CIB1 was associated with EphA2 and KSHV entry associated signal molecules such as Src, PI3-K, and c-Cbl. CIB1 knockdown significantly reduced the infection induced EphA2, Src and Erk1/2 activation. Mass spectrometry revealed the simultaneous association of CIB1 and EphA2 with the actin cytoskeleton modulating myosin IIA and alpha-actinin 4 molecules, and CIB1 knockdown reduced EphA2''s association with myosin IIA and alpha-actinin 4. Collectively, these studies revealed for the first time that CIB1 plays a role in virus entry and macropinocytosis, and suggested that KSHV utilizes CIB1 as one of the key molecule(s) to coordinate and sustain the EphA2 mediated signaling involved in its entry, and CIB1 is an attractive therapeutic target to block KSHV infection. 相似文献
8.
Dr. V. Arunachalam Dr. A. Bandyopadhyay 《TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik》1979,54(5):203-207
Summary A set of complex crosses with multiple crosses as female parents were made using multiple pollen in turnip rape (Brassica campestris L.). These multiple cross — multiple pollen hybrids (mucromphs) were evaluated for a large number of quantitative characters including yield. New methods were proposed to study such genetic material in depth so as to formulate suitable strategies to breed for attractive seed yield.Part of the Ph. D. Thesis of junior author submitted to Indian Agricultural Research Institute, New Delhi 相似文献
9.
Interaction of KAI1 on tumor cells with DARC on vascular endothelium leads to metastasis suppression 总被引:12,自引:0,他引:12
Bandyopadhyay S Zhan R Chaudhuri A Watabe M Pai SK Hirota S Hosobe S Tsukada T Miura K Takano Y Saito K Pauza ME Hayashi S Wang Y Mohinta S Mashimo T Iiizumi M Furuta E Watabe K 《Nature medicine》2006,12(8):933-938
CD82, also known as KAI1, was recently identified as a prostate cancer metastasis suppressor gene on human chromosome 11p1.2 (ref. 1). The product of CD82 is KAI1, a 40- to 75-kDa tetraspanin cell-surface protein also known as the leukocyte cell-surface marker CD82 (refs. 1,2). Downregulation of KAI1 has been found to be clinically associated with metastatic progression in a variety of cancers, whereas overexpression of CD82 specifically suppresses tumor metastasis in various animal models. To define the mechanism of action of KAI1, we used a yeast two-hybrid screen and identified an endothelial cell-surface protein, DARC (also known as gp-Fy), as an interacting partner of KAI1. Our results indicate that the cancer cells expressing KAI1 attach to vascular endothelial cells through direct interaction between KAI1 and DARC, and that this interaction leads to inhibition of tumor cell proliferation and induction of senescence by modulating the expression of TBX2 and p21. Furthermore, the metastasis-suppression activity of KAI1 was significantly compromised in DARC knockout mice, whereas KAI1 completely abrogated pulmonary metastasis in wild-type and heterozygous littermates. These results provide direct evidence that DARC is essential for the function of CD82 as a suppressor of metastasis. 相似文献
10.
Kaustav Bandyopadhyay Ajit Bikram Datta 《Archives of biochemistry and biophysics》2010,501(2):239-243
λCII is the key protein that influences the lysis/lysogeny decision of λ by activating several phage promoters. The effect of CII is modulated by a number of phage and host proteins including Escherichia coli HflK and HflC. These membrane proteins copurify as a tightly bound complex ‘HflKC’ that inhibits the HflB (FtsH)-mediated proteolysis of CII both in vitro and in vivo. Individual purification of HflK and HflC has not been possible so far, since each requires the presence of the other for proper folding. We report the first purification of HflK and HflC separately as active and functional proteins and show that each can interact with HflB on its own and each inhibits the proteolysis of CII. They also inhibit the proteolysis of E. coli σ32 by HflB. We show that at low concentrations each protein is dimeric, based on which we propose a scheme for the mutual interactions of HflB, HflK and HflC in a supramolecular HflBKC protease complex. 相似文献