全文获取类型
收费全文 | 119篇 |
免费 | 11篇 |
国内免费 | 1篇 |
专业分类
131篇 |
出版年
2022年 | 1篇 |
2021年 | 3篇 |
2020年 | 7篇 |
2019年 | 4篇 |
2018年 | 9篇 |
2017年 | 6篇 |
2016年 | 6篇 |
2015年 | 5篇 |
2014年 | 10篇 |
2013年 | 5篇 |
2012年 | 11篇 |
2011年 | 11篇 |
2010年 | 4篇 |
2009年 | 7篇 |
2008年 | 6篇 |
2007年 | 9篇 |
2006年 | 5篇 |
2005年 | 3篇 |
2004年 | 2篇 |
2003年 | 2篇 |
2002年 | 3篇 |
2001年 | 2篇 |
2000年 | 2篇 |
1999年 | 1篇 |
1997年 | 1篇 |
1990年 | 1篇 |
1989年 | 1篇 |
1988年 | 1篇 |
1985年 | 1篇 |
1984年 | 1篇 |
1982年 | 1篇 |
排序方式: 共有131条查询结果,搜索用时 15 毫秒
1.
Optimal conditions for the extraction of casearins from Casearia sylvestris were determined using response surface methodology. The maceration and sonication extraction techniques were performed using a 3 x 3 x 3 full factorial design including three acidity conditions, three solvents of different polarities and three extraction times. The yields and selectivities of the extraction of casearins were significantly influenced by acidity conditions. Taking into account all variables tested, the optimal conditions for maceration extraction were estimated to involve treatment with dichloromethane saturated with ammonium hydroxide for 26 h. Similar yields and selectivities for casearins were determined for sonication extraction using the same solvent but for the much shorter time of 1 h. The best results for stabilisation of the fresh plant material were obtained using leaves that had been oven dried at 40 degrees C for 48 h. 相似文献
2.
E C Torres-Santos D Lopes R Rodrigues Oliveira J P P Carauta C A Bandeira Falcao M A C Kaplan B Rossi-Bergmann 《Phytomedicine》2004,11(2-3):114-120
The inhibiting activity of triterpenoids isolated from the methanolic extract of Pourouma guianensis (Moraceae) leaves is described for promastigotes and intracellular amastigotes of Leishmania amazonensis. Whereas the fractions containing apigenin, friedelin, epi-friedelinol, arjunolic acid, hyptatic acid B, stigmasterol and sitosterol were of no or relatively low inhibitory activity, fractions containing tormentic acid, 2alpha,3beta-dihydroxyursan-12-en-28-oic acid, 2alpha,3beta-dihydroxyolean-12-en-28-oic acid, oleanolic acid and ursolic acid were very potent in inhibiting promastigote growth at 100 microg/ml. Of the eleven isolated compounds, however, only ursolic acid and oleanolic acid showed high activity against intracellular amastigotes (IC50 value = 27 microg/ml and 11 microg/ml, respectively), which was superior to the control drug Glucantime (IC50 value = 83 microg/ml). The antileishmanial activity of oleanolic acid was directed against the parasite and not due to activation of nitric oxide intermediates by macrophages, but this triterpenoid also significantly inhibited the phagocytic capacity of those cells at concentrations above 40 microg/ml, indicating a cytotoxic effect. These results indicate that Pourouma guianensis contains many triterpenoids and some, such as ursolic and oleanolic acids, may serve as lead compounds for new antileishmanial drugs, but chemical modifications may be necessary to avoid unselective cytotoxicity. 相似文献
3.
Alicia L. Richards Catherine E. Vincent Adrian Guthals Christopher M. Rose Michael S. Westphall Nuno Bandeira Joshua J. Coon 《Molecular & cellular proteomics : MCP》2013,12(12):3812-3823
We report the use of neutron-encoded (NeuCode) stable isotope labeling of amino acids in cell culture for the purpose of C-terminal product ion annotation. Two NeuCode labeling isotopologues of lysine, 13C615N2 and 2H8, which differ by 36 mDa, were metabolically embedded in a sample proteome, and the resultant labeled proteins were combined, digested, and analyzed via liquid chromatography and mass spectrometry. With MS/MS scan resolving powers of ∼50,000 or higher, product ions containing the C terminus (i.e. lysine) appear as a doublet spaced by exactly 36 mDa, whereas N-terminal fragments exist as a single m/z peak. Through theory and experiment, we demonstrate that over 90% of all y-type product ions have detectable doublets. We report on an algorithm that can extract these neutron signatures with high sensitivity and specificity. In other words, of 15,503 y-type product ion peaks, the y-type ion identification algorithm correctly identified 14,552 (93.2%) based on detection of the NeuCode doublet; 6.8% were misclassified (i.e. other ion types that were assigned as y-type products). Searching NeuCode labeled yeast with PepNovo+ resulted in a 34% increase in correct de novo identifications relative to searching through MS/MS only. We use this tool to simplify spectra prior to database searching, to sort unmatched tandem mass spectra for spectral richness, for correlation of co-fragmented ions to their parent precursor, and for de novo sequence identification.The ability to make de novo sequence identifications directly from tandem mass spectra has long been a holy grail of the proteomic community. Such a capability would wean the field from its reliance upon sequenced genome databases. Even for organisms with fully annotated genomes, events such as single nucleotide polymorphisms, alternative splicing, gene fusion, and a host of other genomic transformations can result in altered proteomes. These alterations can vary from cell to cell and individual to individual. Thus, one could argue that the most valuable proteomic information, the individual and cellular proteome variation from the genome, remains elusive (1). This problem has received considerable attention; that said, it is not easy to de novo correlate spectrum to sequence in a large-scale, automated fashion (2–6). Improvements in mass accuracy have helped, but routine, reliable de novo sequencing without database assistance is not standard (7–10).A primary means to facilitate de novo spectral interpretation is the simple annotation of m/z peaks in tandem mass spectra as either N- or C-terminal. We and others have investigated this seemingly simple first step. Real-world spectra, however, are complex. Difficulties often arise in determining the charge state of the fragment or in differentiating between fragment ions and peaks arising from neutral loss, internal fragmentation, or spectral noise, both electronic and chemical. Several strategies have focused on product ion annotation. These approaches have included manipulation of the N-terminus basicity combined with electron transfer dissociation (ETD)1 (11–13). This approach can yield mostly N-terminal fragments for peptides having only two charges. However, it requires both ETD and the protease LysN. Other methods have used differential labeling of N- and C-terminal peptides to shift either one or the other product ion series, by either metabolic or chemical means (14–18). Metabolic incorporation of amino acids is an efficient method of introducing distinctive labels that eliminates in vitro labeling, but this method requires that the sample be amenable to cell culture (19, 20). Additionally, it may be difficult to achieve complete labeling in complex systems. Several other approaches used to introduce heavy isotopes onto one terminus have been investigated, including trypsin digestion in 18O water (21–23), differential isotopic esterification (24, 25), derivatization of the C-terminal carboxylate by p-bromophenethylamine (8, 26), N-terminal derivatization with sulfonic acid groups (27, 28), and formaldehyde labeling via reductive amination (29–31). These chemical modifications are introduced after cell lysis, often immediately prior to analysis. Although chemical labeling strategies can be used with a variety of samples, difficulties can arise from differences in labeling efficiency between samples, and often a clean-up step is required following labeling, which may lead to sample loss. No matter the labeling method, in this regime, the two precursors must be separately isolated, fragmented, and analyzed either together or separately. The recognition and selection of the broadly spaced doublet in real time also are necessary. These requirements have limited the utility of these approaches. Our own laboratory discovered that the c- and ●z-type product ions generated from either electron capture dissociation or ETD have distinct chemical formulae and therefore can always be distinguished based on accurate mass alone (32). The problem with this approach is that extremely high mass accuracy (<500 ppb) is required in order to distinguish these product ion types above ∼600 Da in mass. Thus, the majority of the product ions within a spectrum cannot be readily mapped to either terminus with high confidence.Despite these difficulties, we assert that robust de novo sequencing methodology would benefit greatly from a simple method that could be used to distinguish N- and C-terminal product ions with high accuracy and precision. Ideally, the approach would work regardless of the choice of proteolytic enzyme or dissociation method. Recently, we described a new technology for protein quantification called neutron encoding (NeuCode) (33). NeuCode embeds millidalton mass differences into peptides and proteins by exploiting the mass defect induced by differences in the nuclear binding energies of the various stable isotopes of common elements such as C, N, H, and O. For example, consider the amino acid lysine, which has eight additional neutrons (+8 Da). One way to synthesize this amino acid is to add six 13C atoms and two 15N atoms (+8.0142 Da). Another isotopologue could be constructed by adding eight 2H atoms (+8.0502). These two isotopologues differ by only 36 mDa; peptide precursors containing both of these amino acids would appear as a single, unresolved precursor m/z peak at a mass resolving power of less than ∼100,000. However, under high resolving powers (i.e. greater than ∼100,000 at m/z 400), this doublet is resolved. We first developed this NeuCode concept in the context of metabolic labeling, akin to stable isotope labeling with amino acids in cell culture (SILAC), except that instead of the precursor partners being separated by 4 to 8 Da, they are separated by only 6 to 40 mDa. For quantitative purposes, NeuCode promises to deliver ultraplexed SILAC (>12) without increasing spectral complexity.We reasoned that the isotopologues of Lys that permit NeuCode SILAC would generate a distinct fingerprint on C-terminal product ions. Specifically, peptides that have been labeled with NeuCode SILAC and digested with LysC uniformly contain Lys at the C terminus. Upon MS/MS, all C-terminal product ions should present as doublets (with duplex NeuCode), whereas N-terminal products will be detected as a single m/z peak. The very close m/z spacing of the NeuCode SILAC partners will ensure that each partner is always co-isolated and that the signatures are visible only upon high-resolving-power mass analysis. Here we investigate the combination of NeuCode SILAC and high-resolving-power MS/MS analysis to allow the straightforward identification of C-terminal product ions.
Sample Preparation
Saccharomyces cerevisiae strain BY4741 Lys1Δ was grown in defined synthetic complete (SC, Sunrise Science, San Diego, CA) drop-out media with either heavy 6C13/2N15 lysine (+8.0142 Da, Cambridge Isotopes, Tewksbury, MA), or heavy 8D (+8.0502 Da, Cambridge Isotopes). Cells were propagated to a minimum of 10 doublings. At mid-log phase, cells were harvested via centrifugation at 3,000 × g for 3 min and then washed three times with chilled double distilled H2O. Cell pellets were resuspended in 5 ml lysis buffer (50 mm Tris pH 8, 8 m urea, 75 mm sodium chloride, 100 mm sodium butyrate, 1 mm sodium orthovanadate, protease and phosphatase inhibitor tablet), and protein was extracted via glass bead milling (Retsch, Haan, Germany). Protein concentration was measured via BCA (Pierce). Cysteines in the yeast lysate were reduced with 5 m dithiothreitol at ambient temperature for 30 min, alkylated with 15 mm iodoacetamide in the dark at ambient temperature for 30 min, and then quenched with 5 mm dithiothreitol. 50 mm tris (pH 8.0) was used to dilute the urea concentration to 4 m. Proteins were digested with LysC (1:50 enzyme:protein ratio) at ambient temperature for 16 h. The digestion was quenched with TFA and desalted with a tC18 Sep-Pak (Waters, Etten-Leur, The Netherlands). Samples were prepared by mixing 6C13/2N15 (+8.0412 Da) and 8D (+8.0502 Da) labeled peptides in 1:1 ratios by mass. For strong cation exchange fractionation, peptides were dissolved in 400 μl of strong cation exchange buffer A (5 mm KH2PO4 and 30% acetonitrile; pH 2.65) and injected onto a polysulfoethylaspartamide column (9.4 mm × 200 mm; PolyLC) attached to a Surveyor LC quarternary pump (Thermo Electron, West Chester, PA) operating at 3 ml/min. Peptides were detected by photodiode array detector (Thermo Electron, West Chester, PA). Fractions were collected every 2 min starting at 10 min into the following gradient: 0–2 min at 100% buffer A, 2–5 min at 0%–15% buffer B (5 mm KH2PO4, 30% acetonitrile, and 350 mm KCl (pH 2.65)), and 5–35 min at 15%–100% buffer B. Buffer B was held at 100% for 10 min. Finally, the column was washed with buffer C (50 mm KH2PO4 and 500 mm KCl (pH 7.5)) and water before recalibration. Fractions were collected by hand every 2 to 3 min starting at 10 min into the gradient and were lyophilized and desalted with a tC18 Sep-Pak (Waters).LC-MS/MS
Samples were loaded onto a 15-cm-long, 75-μm capillary column packed with 5 μm Magic C18 (Michrom, Auburn, CA) particles in mobile phase A (0.2% formic acid in water). Peptides were eluted with mobile phase B (0.2% formic acid in acetonitrile) over a 120-min gradient at a flow rate of 300 nl/min. Eluted peptides were analyzed by an Orbitrap Elite mass spectrometer. For the nonfractionated samples, mass spectrometer instrument methods comprised one MS1 scan followed by data-dependent MS2 scans of the five most intense precursors. A survey MS1 scan was performed by the Orbitrap at 30,000 resolving power to identify precursors to sample for tandem mass spectrometry, and this was followed by an additional MS1 scan at 480,000 resolving power (at m/z 400; actual mass resolving power of 470,700). Data-dependent tandem mass spectrometry was performed via beam-type collisional activated dissociation (HCD) in the Orbitrap at a resolving power of 15,000, 60,000, 120,000, or 240,000 and a collision energy of 30. Preview mode was enabled, and precursors of unknown charge or with a charge of +1 were excluded from MS2 sampling. For experiments comparing the duty cycle and resolving power required in order to distinguish y-ion doublets, MS1 and MS2 target ion accumulation values were set to 5 × 105 and 5 × 104, respectively. For all other experiments, MS1 target accumulation values were set to 1 × 106 and MS2 accumulation values were set to 4 × 105. Dynamic exclusion was set to 30 s for −0.55 m/z and +2.55 m/z of selected precursors. For ETD analysis, data-dependent top-five mass spectrometry was performed at a resolving power of 240,000 (m/z 400; actual MS2 mass resolving power of 271,000) (34). ETD accumulation values were set to 1 × 106 for MS1 target accumulation and 4 × 105 for MS2 target accumulation. The fluoranthene reaction time was set to 100 ms. For the high-pH strong cation exchange fractions, data-dependent tandem mass spectrometry was performed via HCD at a resolving power of either 60,000 or 120,000 and a collision energy of 30. Preview mode was enabled, and precursors of unknown charge or with a charge of +1 were excluded from MS2 sampling. MS1 targets were set to 1 × 106, and MS2 accumulation values were set to 4 × 105. Dynamic exclusion was set to 45 s for −0.55 m/z and +2.55 m/z of selected precursors. Analysis by use of a wide isolation window was performed on an Orbitrap Fusion. MS1 analysis was performed at 450,000 resolving power (m/z 200), and MS2 analysis was performed at 120,000 resolving power (m/z 400). Data-dependent top-N mass spectrometry was performed, with precursors selected from sequential 25-Da windows. HCD was performed twice on the same precursor, first by use of a quadrupole isolation width of 0.7 m/z for peptide identification, and then using 25 m/z quadrupole isolation. Fragment ions were analyzed in the Orbitrap at a mass resolving power of 120,000 (m/z 400). MS1 and MS2 target accumulation values were set to 2 × 105 and 5 × 104, respectively.Data Analysis
Thermo.raw files were converted to searchable DTA text files using the Coon OMSSA Proteomic Analysis Software Suite (COMPASS) (35). DTA files containing exclusively y-ions were generated using an in-house algorithm. DTA files were searched against the UniProt yeast database (version 132) with Lys-C specificity using the Open Mass Spectrometry Search Algorithm (OMSSA), version 2.1.9 (36). Methionine oxidation was searched as a variable modification. Cysteine carbamidomethylation and the mass shift imparted by the lysine isotopolgues were searched as fixed modifications. For MS2 scans performed at a resolving power of 60,000, 120,000, or 240,000, a shift of +8.0142, representing the mass shift of the 13C615N2 isotopologue, was searched. For MS2 scans performed at 15,000 resolving power, the average shift of the 13C615N2 and 8H2 isotopologues (+8.0322) was searched. For all analyses, the precursor mass was obtained from the 480,000 MS scan. The precursor mass tolerance was defined as 50 ppm, and the fragment ion mass tolerance was set to 0.01 Da. A histogram of precursor mass error at different search tolerances is presented in supplemental Fig. S1. Using the COMPASS software suite, obtained search results were filtered to 1% FDR based on E-values. y-ion doublets were extracted from raw files using an in-house algorithm explained in the supplemental information. Briefly, an ensemble of three different machine learning models was used to score each MS/MS spectral peak for C-terminal product ion prediction. To train our ensemble learner to correctly distinguish C-terminal product ion peaks from N-terminal product ion peaks and noise peaks within our experimental MS/MS spectra, we generated a representative training set of spectral data. Instances used for training and test sets were peaks acquired only from MS/MS spectra associated with a peptide identification. Peaks with a signal-to-noise value of less than 5 were not used. Feature information for each training/testing instance was extracted from raw spectral data. Seven MS/MS spectral features were selected to generate training and test set data: (1) “has doublet” (evaluated as “true” only if a spectral peak could be found at the predicted m/z of the peak''s “heavy” partner), (2) “signal-to-noise” (discretized using a scale of 1–5 based on the peak''s signal-to-noise value), (3) “is isotope,” (4) “is neutral loss,” (5) “number of isotopes,” (6) “number of doublet isotopes,” and (7) “has neutral loss.”To evaluate NeuCode SILAC labeling for automated de novo sequencing, PepNovo+ (8) was benchmarked on y-ion predicted spectra. First, a set of identified spectra from 13,832 unique peptides (>7,400 per precursor charge 2–3) was produced to train PepNovo+ so it could learn features such as the relative peak height ranks of b/y-ions and the probability of noise at each mass interval. These training spectra were acquired under the 11 NeuCode yeast strong cation exchange fractions prepared as described above. Thermo raw files were converted into mzXML format using ProteoWizard v2.2.2828 (with peak-picking turned on) and identified by MS-GF+ v9358 (37) at a 1% spectrum-level FDR against the UniProt yeast database (plus isoforms), v20110729. A fixed modification of K+8.0142 was imposed along with variable modifications of oxidized Met and deamidated Asn/Gln. All MS/MS scans were searched with a 50-ppm precursor mass tolerance, the high-accuracy LTQ instrument setting, the HCD fragmentation setting, and one allowed missed Lys-C cleavage.Thermo.raw files were also converted into DTA spectra as before, except the in-house algorithm for selecting y-ion doublets was slightly altered to boost the peak height of predicted y-ions above that of other peaks (the cumulative peak height was equal to the sum of the monoisotopic doublet peaks, all isotopic doublet peaks, and two times the peak height of the base peak) and to convert their m/z to charge one. Remaining peaks not predicted to be y-ions were converted to charge one by a previously described MS/MS deconvolution tool (38). Deconvoluted DTA spectra that originated from identified MS/MS scans were then paired with the MSGF+ peptide IDs and passed to PepNovo+ for training. The resulting PepNovo+ scoring model lacked the rank-boosting component (39), which requires identified spectra from >100,000 unique peptides per precursor charge state and extensive modification of the PepNovo+ source code to train. Still, the model was sufficient to perform de novo peptide sequencing on the y-ion predicted spectra. PepNovo+ was also run on the raw MS/MS scans (mzXML spectra converted to MGF with all MS/MS peaks converted to charge one) by use of a previously trained HCD scoring model that also lacks the rank-boosting component (40). The following PepNovo+ parameters were set at all stages of training and benchmarking: fixed modification of K+8.0142; variable modifications of oxidized Met and deamidated Asn; 0.01-Da fragment mass tolerance; use of spectrum precursor charge; and use of spectrum precursor m/z. 相似文献4.
Antibacterial potential of phytochemicals alone or in combination with antimicrobials against fish pathogenic bacteria 下载免费PDF全文
5.
CD25+ CD4+ T cells regulate the expansion of peripheral CD4 T cells through the production of IL-10 总被引:21,自引:0,他引:21
Annacker O Pimenta-Araujo R Burlen-Defranoux O Barbosa TC Cumano A Bandeira A 《Journal of immunology (Baltimore, Md. : 1950)》2001,166(5):3008-3018
The mechanisms by which the immune system achieves constant T cell numbers throughout life, thereby controlling autoaggressive cell expansions, are to date not completely understood. Here, we show that the CD25(+) subpopulation of naturally activated (CD45RB(low)) CD4 T cells, but not CD25(-) CD45RB(low) CD4 T cells, inhibits the accumulation of cotransferred CD45RB(high) CD4 T cells in lymphocyte-deficient mice. However, both CD25(+) and CD25(-) CD45RB(low) CD4 T cell subpopulations contain regulatory cells, since they can prevent naive CD4 T cell-induced wasting disease. In the absence of a correlation between disease and the number of recovered CD4(+) cells, we conclude that expansion control and disease prevention are largely independent processes. CD25(+) CD45RB(low) CD4 T cells from IL-10-deficient mice do not protect from disease. They accumulate to a higher cell number and cannot prevent the expansion of CD45RB(high) CD4 T cells upon transfer compared with their wild-type counterparts. Although CD25(+) CD45RB(low) CD4 T cells are capable of expanding when transferred in vivo, they reach a homeostatic equilibrium at lower cell numbers than CD25(-) CD45RB(low) or CD45RB(high) CD4 T cells. We conclude that CD25(+) CD45RB(low) CD4 T cells from nonmanipulated mice control the number of peripheral CD4 T cells through a mechanism involving the production of IL-10 by regulatory T cells. 相似文献
6.
The number and nature of the "signals" required for lymphocyte activation have been so repetitively and academically discussed over the last 15 years that both the readers and the authors appear exhausted by such exercises. Yet, what may be considered to be the essential question, the basis for self-nonself discrimination, remains to be clarified. Since it has been established that clonal expansion and maturation to effector functions are brought about by polyclonally ("immunologically nonspecific") active factors, it is obvious that the crucial "step" in this context is the initial interaction of antigen with specific receptors of immunocompetent lymphocytes. This initial discriminatory event appears to proceed differently on the various cell subsets. We first deal with the mechanism of induction and growth of cytotoxic-T-lymphocyte precursors, and then discuss the inductive requirements leading to proliferation of T helper cells. 相似文献
7.
Yan-Fung Wong Qing Sheng Janet WL Chung Jacky KF Chan King L Chow 《BMC developmental biology》2010,10(1):82
Background
C. elegans TGF-β-like Sma/Mab signaling pathway regulates both body size and sensory ray patterning. Most of the components in this pathway were initially identified by genetic screens based on the small body phenotype, and many of these mutants display sensory ray patterning defect. At the cellular level, little is known about how and where these components work although ray structural cell has been implicated as one of the targets. Based on the specific ray patterning abnormality, we aim to identify by RNAi approach additional components that function specifically in the ray lineage to elucidate the regulatory role of TGF-β signaling in ray differentiation. 相似文献8.
Marina Bandeira Marc-André Bouchard Luc Granger 《Applied psychophysiology and biofeedback》1982,7(3):317-330
This paper discusses the general methodological controversy between individual and group research approaches by comparing the main characteristics of these two methods as applied to the specific context of basic research on voluntary heart rate control. A review of the literature published over the past 19 years in this area of study shows an imbalance in the frequency of utilization of these two methods that strongly favors short-term group designs. Implications of this research tendency are discussed. The relevance and the advantages of applying the individual approach to voluntary autonomic control research are outlined. This area is particularly amenable to the individual approach because the phenomena under study seem to be characterized by, among other things, a smaller intrasubject than intersubject variability. It is suggested that the present imbalanced tendency in the choice of a research method be corrected and that researchers adopt a more flexible attitude in the choice of the best method for studying each specific problem. 相似文献
9.
10.
Genetic signature of the northward expansion of the Egyptian mongoose Herpestes ichneumon (Herpestidae) in the Iberian Peninsula 下载免费PDF全文
Tânia Barros Eduardo Ferreira Rita Gomes Rocha Philippe Gaubert Victor Bandeira Luis Souto António Mira Carlos Fonseca 《Biological journal of the Linnean Society. Linnean Society of London》2016,118(3):686-697
In the last three decades, the range of the Egyptian mongoose (Herpestes ichneumon) has increased in the Iberian Peninsula. A panel of microsatellites was used to confront the patterns of genetic diversity of the species with the scenario of its recent northward expansion in its Iberian range. Evidence of substructure and significant genetic differentiation within the studied population were recorded, with a central‐northern subpopulation (CNorth) and a southern subpopulation (S). Northward range expansion was supported by the observed allelic frequencies, diversity parameters, and observed heterozygosity of the studied loci, with S showing a higher allelic diversity and a higher number of private alleles than CNorth. Patterns of isolation‐by‐distance and isolation‐by‐barrier as a result of the Tagus River were demonstrated, suggesting that the river acted as a semi‐permeable barrier, possibly leading to genetic differentiation of the studied population. The observed individuals from CNorth in southern locations and individuals from S in central/northern areas might comprise evidence for long‐range dispersals across the studied range. A bottleneck event after population expansion was supported by a significant heterozygosity deficiency in CNorth, which is in agreement with a scenario of founder events occurring in recently colonized areas after the crossing of the Tagus River. 相似文献