首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   522篇
  免费   31篇
  国内免费   2篇
  2023年   2篇
  2022年   8篇
  2021年   10篇
  2020年   4篇
  2019年   12篇
  2018年   7篇
  2017年   6篇
  2016年   12篇
  2015年   19篇
  2014年   30篇
  2013年   42篇
  2012年   39篇
  2011年   43篇
  2010年   36篇
  2009年   43篇
  2008年   31篇
  2007年   23篇
  2006年   22篇
  2005年   23篇
  2004年   22篇
  2003年   17篇
  2002年   8篇
  2001年   13篇
  2000年   7篇
  1999年   7篇
  1998年   2篇
  1997年   4篇
  1996年   1篇
  1995年   3篇
  1994年   3篇
  1993年   3篇
  1992年   4篇
  1991年   2篇
  1990年   5篇
  1989年   5篇
  1988年   2篇
  1987年   5篇
  1986年   4篇
  1985年   6篇
  1984年   4篇
  1983年   4篇
  1981年   2篇
  1975年   1篇
  1974年   2篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
  1970年   3篇
  1968年   1篇
排序方式: 共有555条查询结果,搜索用时 15 毫秒
81.
Twenty-one isolates of phosphate solubilizing-indole acetic acid producing rhizobacteria (PSIRB), 20 isolates of phosphate solubilizing rhizobacteria (PSRB) and 42 isolates of indole acetic acid producing rhizobacteria (IRB) were isolated from 49 rhizospheric soil samples of tomato (Lycopersicon esculentum Mill.) collected from tomato growing regions of Karnataka. A method combining Pikovskaya’s and Bric’s technique was developed to isolate PSRIB, PSRB and IRB’s. The selected isolates were further analyzed for their ability to solubilize calcium phytate. Based on the root colonization assays and the abilities of bacterial isolates to increase the seed germination and seedling vigor under laboratory conditions, five isolates were selected from each group for further studies. Under greenhouse conditions, all the selected rhizobacteria isolates significantly increased root length, shoot length, fresh weight, dry weight and total phosphorus content of 30-day-old-seedlings with respect to control. Isolate PSIRB1 and IRB36 significantly reduced the Fusarium wilt incidence over other isolates of same and other group, and the control. On the basis of results from laboratory and greenhouse studies, one bacterial isolate from each group was selected for plant growth and yield analysis studies. Isolate PSIRB2 showed increased plant height, fresh weight, number of fruits per plant and average weight of fruit over PSRB9, IRB36 and untreated controls. Studies on the nature of protection offered by these bacterial isolates following split-root technique revealed that the isolates PSIRB2 and PSRB9 had the ability to induce systemic resistance. One isolate, IRB36 appeared to protect the tomato seedlings through direct antagonism.  相似文献   
82.
The γ134.5 protein of herpes simplex virus 1 is an essential factor for viral virulence. In infected cells, this viral protein prevents the translation arrest mediated by double-stranded RNA-dependent protein kinase R. Additionally, it associates with and inhibits TANK-binding kinase 1, an essential component of Toll-like receptor-dependent and -independent pathways that activate interferon regulatory factor 3 and cytokine expression. Here, we show that γ134.5 is required to block the maturation of conventional dendritic cells (DCs) that initiate adaptive immune responses. Unlike wild-type virus, the γ134.5 null mutant stimulates the expression of CD86, major histocompatibility complex class II (MHC-II), and cytokines such as alpha/beta interferon in immature DCs. Viral replication in DCs inversely correlates with interferon production. These phenotypes are also mirrored in a mouse ocular infection model. Further, DCs infected with the γ134.5 null mutant effectively activate naïve T cells whereas DCs infected with wild-type virus fail to do so. Type I interferon-neutralizing antibodies partially reverse virus-induced upregulation of CD86 and MHC-II, suggesting that γ134.5 acts through interferon-dependent and -independent mechanisms. These data indicate that γ134.5 is involved in the impairment of innate immunity by inhibiting both type I interferon production and DC maturation, leading to defective T-cell activation.Herpes simplex virus 1 (HSV-1) is a human pathogen responsible for localized mucocutaneous lesions and encephalitis (51). Following primary infection, HSV-1 establishes a latent or lytic infection in which the virus interacts with host cells, which include dendritic cells (DCs), required to initiate adaptive immune responses (36). Immature DCs, which reside in almost all peripheral tissues, are able to capture and process viral antigens (15). In this process, DCs migrate to lymph nodes, where they mature and present antigens to T cells. Mature DCs display high levels of major histocompatibility complex class II (MHC-II) and costimulatory molecules such as CD40, CD80, and CD86. Additionally, DCs release proinflammatory cytokines such as interleukin-12 (IL-12), tumor necrosis factor alpha, alpha interferon (IFN-α), and IFN-β, which promote DC maturation and activation. An important feature of functional DCs is to activate naïve T cells, and myeloid submucosal and lymph node resident DCs are responsible for HSV-specific T-cell activation (2, 45, 52). Moreover, DCs play a direct role in innate antiviral immunity by secreting type I IFN.HSV-1 is capable of infecting both immature and mature DCs (20, 24, 34, 38, 42). A previous study suggested that HSV entry into DCs requires viral receptors HVEM and nectin-2 (42). Upon HSV infection, plasmacytoid DCs detect viral genome through Toll-like receptor 9 (TLR9) and produce high levels of IFN-α (16, 23, 30, 40). In contrast, myeloid DCs, which are major antigen-presenting cells, recognize viral components through distinct pathways, independently of TLR9 (16, 36, 40). It has been suggested previously that HSV proteins or RNA intermediates produced during viral replication trigger myeloid DCs (16, 40). Indeed, a protein complex that consists of HSV glycoproteins B, D, H, and L stimulates the expression of CD40, CD83, CD86, and cytokines in myeloid DCs (41). Hence, DCs sense HSV through TLR-dependent and -independent mechanisms (16, 40, 41). Nevertheless, HSV replication compromises DC functions and subsequent T-cell activation (3, 20, 24, 42). HSV-1 interaction with immature DCs results in the downregulation of costimulatory molecules and cytokines (20, 34, 38, 42). While HSV-2 induces rapid apoptosis, HSV-1 does so with a delayed kinetics in human DCs (4, 20, 38). HSV-1 is also reported to interfere with functions of mature DCs (24, 39). Upon infection, HSV-1 induces the degradation of CD83 but not CD80 or CD86 in mature DCs (24, 25). Additionally, HSV-1 reduces levels of the chemokine receptors CCR7 and CXCR4 on mature DCs and subsequently impairs DC migration to the respective chemokine ligands CCL19 and CXCL12 (39).Although HSV infection impairs DC functions, viral components responsible for this impairment have not been thoroughly investigated. It has been suggested previously that the virion host shut-off protein (vhs) of HSV-1 contributes partially to the viral block of DC activation (43). This activity is thought to stem from the ability of vhs to destabilize host mRNA. Emerging evidence suggests that ICP0 perturbs the function of mature DCs, where it mediates CD83 degradation via cellular proteasomes (25). Findings from related studies show that ICP0 inhibits the induction of IFN-stimulated genes mediated by IFN regulatory factor 3 (IRF3) or IRF7 in other cell types (11, 27, 32, 33). However, the link of ICP0 activities to DC maturation remains to be established. Recently, we found that γ134.5, an HSV virulence factor, associates with and inhibits TANK-binding kinase 1 (TBK1), an essential component of TLR-dependent and -independent pathways that activates IRF3 and cytokine expression (49). Interestingly, an HSV mutant lacking γ134.5 stimulates MHC-II surface expression in glioblastoma cells (47). These observations raise the hypothesis that γ134.5 may modulate DC maturation during HSV infection.In this study, we report that γ134.5 is required to perturb DC maturation during HSV infection, leading to impaired T-cell activation. Wild-type virus, but not the γ134.5 null mutant, suppresses the expression of costimulatory molecules as well as cytokines in DCs. We provide evidence that the viral block of DC maturation is associated with reduced IFN-α/β secretion. Furthermore, the expression of γ134.5 inhibits DC-mediated allogeneic T-cell activation and IFN-γ production. IFN-neutralizing antibodies partially reverse DC maturation induced by the γ134.5 null mutant. These results shed light on the role of γ134.5 relevant to DC maturation and T-cell responses in HSV infection.  相似文献   
83.
The Δ12 desaturase represents a diverse gene family in plants and is responsible for conversion of oleic acid (18:1) to linoleic acid (18:2). Several members of this family are known from plants like Arabidopsis and Soybean. Using primers from conserved C- and N-terminal regions, we have cloned a novel Δ12 desaturase gene amplified from flax genomic DNA, denoted as LuFAD2-2. This intron-less gene is 1,149-base pair long encoding 382 amino acids—putative membrane-bound Δ12 desaturase protein. Sequence comparisons show that the novel sequence has 85% similarity with previously reported flax Δ12 desaturase at amino acid level and shows typical features of membrane-bound desaturase such as three conserved histidine boxes along with four membrane-spanning regions that are universally present among plant desaturases. The signature amino acid sequence ‘YNNKL’ was also found to be present at the N terminus of the protein, which is necessary and sufficient for ER localization of enzyme. Neighbor-Joining tree generated from the sequence alignment grouped LuFAD2-2 among the other FAD2 sequences from Ricinus, Hevea, Jatropha, and Vernicia. When LuFAD2-2 and LuFAD2 were expressed in Saccharomyces cerevisiae, they could convert the oleic acid to linoleic acid, with an average conversion rate of 5.25 and 8.85%, respectively. However, exogenously supplied linoleic acid was feebly converted to linolenic acid suggesting that LuFAD2-2 encodes a functional FAD2 enzyme and has substrate specificity similar to LuFAD2.  相似文献   
84.
We previously reported that reactive oxygen species (ROS) generated during hypoxia decrease hERG current density and protein expression in HEK cells stably expressing hERG protein. In the present study, we investigated the molecular mechanisms involved in hypoxia-induced downregulation of hERG protein. Culturing cells at low temperatures and addition of chemical chaperones during hypoxia restored hERG expression and currents to normoxic levels while antiarrhythmic drugs, which selectively block hERG channels, had no effect on hERG protein levels. Pulse chase studies showed that hypoxia blocks maturation of the core glycosylated form in the endoplasmic reticulum (ER) to the fully glycosylated form on the cell surface. Co-immunoprecipitation experiments revealed that hypoxia inhibited interaction of hERG with Hsp90 chaperone required for maturation, which was restored in the presence of ROS scavengers. These results demonstrate that ROS generated during hypoxia prevents maturation of the hERG protein by inhibiting Hsp90 interaction resulting in decreased protein expression and currents.  相似文献   
85.
The feeding of neonate larvae of Pieris brassicae (Order Lepidoptera) on leaves of brassica plants that had been colonised by Bacillus thuringiensis resulted in the death of 35% of the population within 72 h. The bacteria multiplied in the cadavers, resulting in an increase of about 50-fold compared to the living insects. Surviving insects showed no ill effects during the time of the study. There was negligible multiplication of B. thuringiensis in the frass.  相似文献   
86.
Abstract  Bitter gourd ( Momordica charantia L.) seeds contain several squash-type serine proteinase inhibitors (PIs), which inhibit the digestive proteinases of the polyphagous insect pest Helicoverpa armigera . In the present work isolation of a DNA sequence encoding the mature peptide of a trypsin inhibitor McTI-II, its cloning and expression as a recombinant protein using Pichia pastoris have been reported. Recombinant McTI-II inhibited bovine trypsin at 1: 1 molar ratio, as expected, but did not inhibit chymotrypsin or elastase. McTI-II also strongly inhibited trypsin-like proteinases (81% inhibition) as well as the total proteolytic activity of digestive proteinases (70% inhibition) from the midgut of H. armigera larvae. The insect larvae fed with McTI-II-incorporated artificial diet suffered over 70% reduction in the average larval weight after 12 days of feeding. Moreover, ingestion of McTI-II resulted in 23% mortality in the larval population. The strong antimetabolic activity of McTI-II toward H. armigera indicates its probable use in developing insect tolerance in susceptible plants.  相似文献   
87.
Expression of brain-derived neurotrophic factor (BDNF) is sensitive to changes in oxygen availability, suggesting that BDNF may be involved in adaptive responses to oxidative stress. However, it is unknown whether or not oxidative stress actually increases availability of BDNF by stimulating BDNF secretion. To approach this issue we examined BDNF release from PC12 cells, a well-established model of neurosecretion, in response to hypoxic stimuli. BDNF secretion from neuronally differentiated PC12 cells was strongly stimulated by exposure to intermittent hypoxia (IH). This response was inhibited by N-acetyl-l-cysteine, a potent scavenger of reactive oxygen species (ROS) and mimicked by exogenous ROS. IH-induced BDNF release requires activation of tetrodotoxin sensitive Na+ channels and Ca2+ influx through N- and L-type channels, as well as mobilization of internal Ca2+ stores. These results demonstrate that oxidative stress can stimulate BDNF release and that underlying mechanisms are similar to those previously described for activity-dependent BDNF secretion from neurons. Surprisingly, we also found that IH-induced secretion of BDNF was blocked by dopamine D2 receptor antagonists or by inhibition of dopamine synthesis with alpha-methyl-p-tyrosine. These data indicate that oxidative stress can stimulate BDNF release through an autocrine or paracrine loop that requires dopamine receptor activation.  相似文献   
88.
Barman A  Schürer S  Prabhakar R 《Biochemistry》2011,50(20):4337-4349
In this combined MD simulation and DFT study, interactions of the wild-type (WT) amyloid precursor protein (APP) and its Swedish variant (SW), Lys670 → Asn and Met671 → Leu, with the beta-secretase (BACE1) enzyme and their cleavage mechanisms have been investigated. BACE1 catalyzes the rate-limiting step in the generation of 40-42 amino acid long Alzheimer amyloid beta (Aβ) peptides. All key structural parameters such as position of the flap, volume of the active site, electrostatic binding energy, structures, and positions of the inserts A, D, and F and 10s loop obtained from the MD simulations show that, in comparison to the WT-substrate, BACE1 exhibits greater affinity for the SW-substrate and orients it in a more reactive conformation. The enzyme-substrate models derived from the MD simulations were further utilized to investigate the general acid/base mechanism used by BACE1 to hydrolytically cleave these substrates. This mechanism proceeds through the following two steps: (1) formation of the gem-diol intermediate and (2) cleavage of the peptide bond. For the WT-substrate, the overall barrier of 22.4 kcal/mol for formation of the gem-diol intermediate is 3.3 kcal/mol higher than for the SW-substrate (19.1 kcal/mol). This process is found to be the rate-limiting in the entire mechanism. The computed barrier is in agreement with the measured barrier of ca. 18.00 kcal/mol for the WT-substrate and supports the experimental observation that the cleavage of the SW-substrate is 60 times more efficient than the WT-substrate.  相似文献   
89.
Tumor recurrence after chemotherapy or radiation remains a major obstacle to successful cancer treatment. A subset of cancer cells, termed cancer stem cells, can elude conventional treatments and eventually regenerate a tumor that is more aggressive. Despite the large number of studies, molecular events that govern the emergence of aggressive therapy-resistant cells with stem cell properties after chemotherapy are poorly defined. The present study provides evidence for the rare escape of tumor cells from drug-induced cell death, after an intermediate stay in a non-cycling senescent stage followed by unstable multiplication characterized by spontaneous cell death. However, some cells appear to escape and generate stable colonies with an aggressive tumor stem cell-like phenotype. These cells displayed higher CD133 and Oct-4 expression. Notably, the drug-selected cells that contained low levels of reactive oxygen species (ROS) also showed an increase in antioxidant enzymes. Consistent with this in vitro experimental data, we observed lower levels of ROS in breast tumors obtained after neoadjuvant chemotherapy compared with samples that did not receive preoperative chemotherapy. These latter tissues also expressed enhanced levels of ROS defenses with enhanced expression of superoxide dismutase. Higher levels of Oct-4 and CD133 were also observed in tumors obtained after neoadjuvant chemotherapy. Further studies provided evidence for the stabilization of Nrf2 due to reduced 26 S proteasome activity and increased p21 association as the driving signaling event that contributes to the transition from a high ROS quiescent state to a low ROS proliferating stage in drug-induced tumor stem cell enrichment.  相似文献   
90.
Here we review the strategies for the solid-phase synthesis of peptides starting from the side chain of the C-terminal amino acid. Furthermore, we provide experimental data to support that C-terminal and side-chain syntheses give similar results in terms of purity. However, the stability of the two bonds that anchor the peptide to the polymer may determine the overall yield and this should be considered for the large-scale production of peptides. In addition, resins/linkers which do not subject to side reactions can be preferred for some peptides.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号