首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   179篇
  免费   20篇
  2020年   1篇
  2019年   3篇
  2018年   3篇
  2017年   4篇
  2016年   2篇
  2015年   5篇
  2014年   5篇
  2013年   4篇
  2012年   9篇
  2011年   11篇
  2010年   4篇
  2009年   7篇
  2008年   5篇
  2007年   4篇
  2006年   5篇
  2005年   6篇
  2004年   4篇
  2003年   2篇
  2002年   9篇
  2001年   8篇
  2000年   6篇
  1999年   11篇
  1998年   6篇
  1997年   8篇
  1996年   4篇
  1994年   1篇
  1993年   1篇
  1992年   6篇
  1991年   5篇
  1990年   2篇
  1989年   7篇
  1988年   4篇
  1987年   6篇
  1986年   3篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
  1982年   1篇
  1980年   1篇
  1979年   1篇
  1978年   3篇
  1977年   3篇
  1976年   2篇
  1975年   2篇
  1974年   2篇
  1973年   2篇
  1972年   5篇
  1966年   2篇
排序方式: 共有199条查询结果,搜索用时 78 毫秒
51.
52.
53.
54.
Rat intestinal fatty-acid-binding protein (I-FABP) is a small (15,124 Mr) cytoplasmic polypeptide that binds long-chain fatty acids in a non-covalent fashion. I-FABP is a member of a family of intracellular binding proteins that are thought to participate in the uptake, transport and/or metabolic targeting of hydrophobic ligands. The crystal structure of Escherichia coli-derived rat I-FABP with a single molecule of bound palmitate has been refined to 2 A resolution using a combination of least-squares methods, energy refinement and molecular dynamics. The combined methods resulted in a model with a crystallographic R-factor of 17.8% (7775 reflections, sigma greater than 2.0), root-mean-square bond length deviation of 0.009 A and root-mean-square bond angle deviation of 2.85 degrees. I-FABP contains ten antiparallel beta-strands organized into two approximately orthogonal, beta-sheets. The hydrocarbon tail of its single C16:0 ligand is present in a well-ordered, distinctively bent conformation. The carboxylate group of the fatty acid is located in the interior of I-FABP and forms a unique "quintet" of electrostatic interactions involving Arg106; Gln 115, and two solvent molecules. The hydrocarbon tail is bent with a slight left-handed helical twist from the carboxylate group to C-16. The bent methylene chain resides in a "cradle" formed by the side-chains of hydrophobic, mainly aromatic, amino acid residues. The refined molecular model of holo-I-FABP suggests several potential locations for entry and exiting of the fatty acid.  相似文献   
55.
Single crystals of a yolk lipoprotein from two species of lamprey oocytes have been prepared and shown to belong to the monoclinic space group C2. The unit cell dimensions combined with molecular weight determinations support the idea that the lipoprotein is a symmetrical dimer centered on a crystallographic 2-fold symmetry axis. The lipid content is estimated to be about 15% (w/w) and the crystals are suitable for structural studies by single crystal X-ray analysis. The X-ray results are correlated with those obtained by electron diffraction.  相似文献   
56.
57.
Multivesicular bodies (MVBs) are spherical endosomal organelles containing small vesicles formed by inward budding of the limiting membrane into the endosomal lumen. In mammalian red cells and cells of immune system, MVBs fuse with the plasma membrane in an exocytic manner, leading to release their contents including internal vesicles into the extracellular space. These released vesicles are termed exosomes. Transmission electron microscopy studies have shown that paramural vesicles situated between the plasma membrane and the cell wall occur in various cell wall-associated processes and are similar to exosomes both in location and in morphology. Our recent studies have revealed that MVBs and paramural vesicles proliferate when cell wall appositions are rapidly deposited beneath fungal penetration attempts or during plugging of plasmodesmata between hypersensitive cells and their intact neighboring cells. This indicates a potential secretion of exosome-like vesicles into the extracellular space by fusion of MVBs with the plasma membrane. This MVB-mediated secretion pathway was proposed on the basis of pioneer studies of MVBs and paramural vesicles in plants some forty years ago. Here, we recall the attention to the occurrence of MVB-mediated secretion of exosomes in plants.Key Words: cell wall, endocytosis, endosome, exocytosis, exosome, multivesicular body, paramural bodyMultivesicular bodies (MVBs) are spherical endosomal organelles containing a number of small vesicles formed by inward budding of the limiting membrane into the endosomal lumen.1 MVBs contain endocytosed cargoes and deliver them into lysosomal/vacuolar compartments for degradation. They also incorporate newly synthesized proteins destined for lysosomal/vacuolar compartments.2 In mammalian cells of hematopoietic origin, endosomal MVBs function in removal of endocytosed surface proteins in an exocytic manner. They are redirected to the plasma membrane, where they release their contents including internal vesicles into the extracellular space by membrane fusion. The released vesicles are termed exosomes.3 During reticulocyte maturation to erythrocyte, a group of surface proteins, such as the transferrin receptor, become obsolete and are discarded via MVB-mediated secretion.3 Time-course transmission electron microscopy (TEM) first revealed that colloidal gold-transferrin was internalized into MVBs via receptor-mediated endocytosis and then transferrin together with its receptor were delivered into the extracellular space via the fusion of MVBs with the plasma membrane of reticulocytes.4 Some other cell types of hematopoietic origin, such as activated platelets, cytotoxic T cells and antigen-presenting cells, also secrete exosomes. Exosomes thus may play a role in various physiological processes other than discarding obsolete proteins.3Our recent TEM studies provided ultrastructural evidence on the enhanced vesicle trafficking in barley leaf cells attacked by the biotrophic powdery mildew fungus. Multivesicular compartments including MVBs, intravacuolar MVBs, and paramural bodies turned out to proliferate in intact host cells during formation of cell wall appositions (papilla response), in the hypersensitive response, and during accommodation of haustoria.5,6 MVBs proliferated in the cytoplasm of haustorium-containing epidermal cells during compatible interactions and near sites of cell wall-associated oxidative microburst either during the papilla response or during the hypersensitive response. Because MVBs in plant cells have been demonstrated to be endosomal compartments,79 they may participate in internalization of nutrients from the apoplast of intact haustorium-containing epidermal cells and sequestration of damaged membranes and deleterious materials originating from the oxidative microburst.5,6 The presence of intravacuolar MVBs with double limiting membranes (Fig. 1A) indicates an engulfment of MVBs by the tonoplast and a vacuole-mediated autophagy of MVBs.5,6 MVBs, as prevacuolar compartments in plant cells,9 thus probably deliver their contents into the central vacuole via both the fusion with the tonoplast and the engulfment by the tonoplast (Fig. 2A and B). On the other hand, paramural bodies, in which small vesicles are situated between the cell wall and the plasma membrane, were associated with cell wall appositions deposited beneath fungal penetration attempts (Fig. 1B) or around hypersensitive cells including sites of plugged plasmodesmata (Fig. 1C and D).5,6 Because paramural vesicles are similar to exosomes both in location and in morphology, we speculated that MVBs fuse with the plasma membrane in an exocytic manner to form paramural bodies.5,6 Endocytosed cell surface materials in endosomal MVBs may be reused and delivered together with newly synthesized materials in Golgi apparatus-derived vesicles to cell wall appositions, which are deposited rapidly to prevent fungal penetration (Fig. 2A) or to contain hypersensitive cell death (Fig. 2B). MVBs thus may be driven along two distinct pathways to deliver their contents into either central vacuole or extracellular space.Open in a separate windowFigure 1Multivesicular compartments in intact cells in barley leaves attacked by the barley powdery mildew fungus. (A) An intravacuolar multivesicular body (MVB) with double limiting membranes in an intact epidermal cell (EC) adjacent to a hypersensitive epidermal cell (EC*). The arrows point to the outer limiting membrane, which is seemingly derived from the tonoplast. Note that neighboring intravacuolar vesicles (in between two arrowheads) may result from degradation of double limiting membranes of intravacuolar MVBs or may be delivered into the vacuole by MVB-fusion with the tonoplast. (B) Paramural vesicles (arrowheads) in a paramural body associated with cell wall appositions (asterisk) deposited by an intact epidermal cell. (C) A multivesicular body (MVB) in contact with a paramural body (PMB) (a nonmedian section) associated with cell wall appositions (asterisk) deposited by an intact mesophyll cell adjacent to a hypersensitive mesophyll cell. Note that cell wall appositions deposit beside an intercellular space (IS). The arrows point to the tonoplast. (D) A paramural body (PMB) associated with cell wall appositions (asterisks) blocking plasmodesmata (in between two arrowheads) at the side of an intact mesophyll cell (MC) underlying a hypersensitive epidermal cell (EC*). The arrows point to the tonoplast. CV, central vacuole; CW, cell wall; MB, microbody. Bars, 1µm.Open in a separate windowFigure 2Hypothetical diagram of delivery of endocytosed cell surface materials via MVBs into the central vacuole or the extracellular space where intact barley cells deposit cell wall appositions. (A) Deposition of cell wall appositions (asterisk) beneath powdery mildew penetration attempts. AGT, appressorial germ tube; PP, penetration peg. (B) Deposition of cell wall appositions (asterisks) against constricted plasmodesmata (PD) between a hypersensitive epidermal cell (EC) penetrated by the powdery mildew fungus and an underlying mesophyll cell (MC). H, haustorium. Arrows and numbers show pathways of vesicle trafficking. 1, Secretion of Golgi-derived vesicles containing newly synthesized materials; G, Golgi body; TGN, trans-Golgi network; 2, Endocytosis of cell surface materials from coated pits (coated open circles) via coated vesicles (coated circles) to multivesicular bodies (MVB); 3, Delivery of endocytosed materials for degradation inside the central vacuole (CV) via membrane fusion between MVBs and the tonoplast (T); small broken circles, vesicles in degradation; 4, Delivery of endocytosed materials for degradation inside the central vacuole via engulfment of MVBs by the tonoplast; large broken circles; MVB limiting membranes in degradation; 5, delivery of endocytosed materials into the extracellular space for deposition of cell wall appositions (asterisks) via membrane fusion between MVBs and the plasma membrane (PM). CW, cell wall; PMB, paramural body. PD0, 1, 2, 3 and 4 represent stages of plugging plasmodesmata. PD0, open plasmodesmata between two intact mesophyll cells (MC) subjacent to the hypersensitive epidermal cell (EC); PD1, constriction of plasmodesmata by callose (grey dots) deposition at plasmodesmal neck region; PD2, constricted plasmodesmata associated with plasmodesma-targeted secretion; PD3, further blocking of plasmodesmata by deposition of cell wall appositions; PD4, completely blocked plasmodesmata.Earlier than the discovery in animal cell systems,4 it was proposed in two independent papers in 1967 that the fusion of MVBs with the plasma membrane might result in the release of small vesicles into the extracellular space in fungi and in higher plants.10,11 Several lines of evidence support the occurrence of MVB-mediated secretion of exosome-like vesicles in plants. First, vesicles of the same morphology as MVB internal vesicles have been observed in extracellular spaces or paramural spaces in various types of plant cells in various plant species by TEM.12 An early study on endocytosis by soybean protoplasts also showed small extracellular vesicles attaching on the plasma membrane.8 Second, cooccurrence of MVBs and paramural vesicles has been observed in processes of cell proliferation, cell differentiation, and cell response to abiotic and biotic stress. Examples are cell plate formation,13,14 secondary wall thickening,15,16 cold hardness,17,18 and deposition of cell wall appositions upon pathogen attack.5,6,1921 Third, identical molecular components, such as arabinogalactan proteins22,23 and peroxidases,6 have been immunolocalized in both MVBs and paramural bodies. Despite these pieces of evidence, a conclusive demonstration of MVB-mediated secretion of exosomes in plants requires further exploration.The presently available experimental systems, approaches, and membrane markers may allow future demonstration of MVB-mediated secretion of exosomes in plants. Recent in vivo real-time observation and colocalization of cell surface and endosomal markers have already revealed that endosomes filled with endocytosed preexisting cell wall and plasma membrane materials are rapidly delivered to cytokinetic spaces to form cell plates in dividing tobacco, Arabidopsis, and maize cells.24 Because TEM observed paramural bodies attaching to cell plates13 and MVBs in the vicinity of cell plates during all stages of cell plate formation,14,25,26 MVBs and paramural bodies may participate in delivery of endocytosed building blocks to cell plates. Jiang''s and Robinson''s labs together developed a transgenic tobacco BY-2 cell line stably expressing a YFP-labeled vacuolar sorting receptor protein and antibodies against the vacuolar sorting receptor protein localized to the limiting membrane of MVBs.9 These tools together with live cell imaging and immunoelectron microscopy may allow visualization of MVB-fusion to the new plasma membrane, of vacuolar sorting receptors in both the limiting membrane of MVBs and the new plasma membrane, and of identical cell plate components in both internal vesicles of MVBs and paramural vesicles.In spite of obvious differences in plant and animal cytokinesis, the generation of cell plates by cell-plate-directed fusion of endosomes resembles the plugging of midbody canals by midbody-directed endosomes to separate daughter cells at the terminal phase of animal cytokinesis.27 Likely, functional similarities of the fusion between endosomal MVBs and the plasma membrane to eliminate unwanted cell contents may also exist in maturation of mammalian red blood cells and plant sieve elements in the sense that the fusion of MVBs with the plasma membrane may occur during maturation of the latter.28 On the other hand, although plant cells may secrete MVB-derived exosomes in defense response upon pathogen attack,5,6 plant cell walls rule out the direct intercellular communication during the immune response mediated by exosomes in the circulation of mammals.3 In contrast, plasmodesma-directed secretion of exosomes would block the cell-to-cell communication between hypersensitive cells and their neighboring cells during hypersensitive response.5 Further exploration will lead us to a better understanding of similarities and differences of exosome secretion between plants and animals.  相似文献   
58.
Luk?evi?s, E., Ahlberg, P.E., Stinkulis, ?., Vasi?kova, J. & Zupi??, I. 2011: Frasnian vertebrate taphonomy and sedimentology of macrofossil concentrations from the Langsēde Cliff, Latvia. Lethaia, Vol. 45, pp. 356–370. The siliciclastic sequence of the Upper Devonian of Kurzeme, Western Latvia, is renowned for abundant vertebrate fossils, including the stem tetrapods Obruchevichthys gracilis and Ventastega curonica. During the first detailed taphonomic study of the vertebrate assemblage from the Ogre Formation cropping out at the Langsēde Cliff, Imula River, abundant vertebrate remains have been examined and identified as belonging to one psammosteid, two acanthodian and three sarcopterygian genera; the placoderm Bothriolepis maxima dominates the assemblage. Besides fully disarticulated placoderm and psammosteid plates, separate sarcopterygian scales and teeth, and acanthodian spines, partly articulated specimens including complete distal segments of Bothriolepis pectoral fins, Bothriolepis head shields and sarcopterygian lower jaws have been found. The size distribution of the placoderm bones demonstrates that the individuals within the assemblage are of approximately uniform age. Distinct zones have been traced within the horizontal distribution of the bones. These linear zones are almost perpendicular to the dominant dip azimuth of the cross‐beds and ripple‐laminae and most probably correspond to the depressions between subaqueous dunes. Concavity ratio varies significantly within the excavation area. The degree of fragmentation of the bones and disarticulation of the skeletons suggest that the carcasses were reworked and slightly transported before burial. Sedimentological data suggest deposition in a shallow marine environment under the influence of rapid currents. The fossiliferous bed consists of a basal bone conglomerate covered by a cross‐stratified sandstone with mud drapes, which is in turn overlain by ripple laminated sandstone, indicating the bones were buried by the gradual infilling of a tidal channel. All the Middle–Upper Devonian vertebrate bone‐beds from Latvia are associated with sandy to clayey deposits and have been formed in a sea‐coastal zone during rapid sedimentation episodes, but differ in fossil abundance and degree of preservation. □Agnathans, Devonian, facies analysis, fish, fossil assemblage, palaeoenvironment.  相似文献   
59.
The survival and growth of the pathogen Helicobacter pylori in the gastric acidic environment is ensured by the activity of urease, an enzyme containing two essential Ni2? ions in the active site. The metallo-chaperone UreE facilitates in vivo Ni2? insertion into the apoenzyme. Crystals of apo-HpUreE (H. pylori UreE) and its Ni?- and Zn?-bound forms were obtained from protein solutions in the absence and presence of the metal ions. The crystal structures of the homodimeric protein, determined at 2.00 ? (apo), 1.59 ? (Ni2?) and 2.52 ? (Zn2?) resolution, show the conserved proximal and solvent-exposed His1?2 residues from two adjacent monomers invariably involved in metal binding. The C-terminal regions of the apoprotein are disordered in the crystal, but acquire significant ordering in the presence of the metal ions due to the binding of His1?2. The analysis of X-ray absorption spectral data obtained using solutions of Ni2?- and Zn2?-bound HpUreE provided accurate information of the metal-ion environment in the absence of solid-state effects. These results reveal the role of the histidine residues at the protein C-terminus in metal-ion binding, and the mutual influence of protein framework and metal-ion stereo-electronic properties in establishing co-ordination number and geometry leading to metal selectivity.  相似文献   
60.
We investigated the effect of development mode on the spatial and temporal population genetic structure of four littorinid gastropod species. Snails were collected from the same three sites on the west coast of Vancouver Island, Canada in 1997 and again in 2007. DNA sequences were obtained for one mitochondrial gene, cytochrome b ( Cyt b ), and for up to two nuclear genes, heat shock cognate 70 ( HSC70 ) and aminopeptidase N intron ( APN54 ). We found that the mean level of genetic diversity and long-term effective population sizes ( N e) were significantly greater for two species, Littorina scutulata and L. plena , that had a planktotrophic larval stage than for two species, Littorina sitkana and L. subrotundata , that laid benthic egg masses which hatched directly into crawl-away juveniles. Predictably, two poorly dispersing species, L. sitkana and L. subrotundata , showed significant spatial genetic structure at an 11- to 65-km geographical scale that was not observed in the two planktotrophic species. Conversely, the two planktotrophic species had more temporal genetic structure over a 10-year interval than did the two direct-developing species and showed highly significant temporal structure for spatially pooled samples. The greater temporal genetic variation of the two planktotrophic species may have been caused by their high fecundity, high larval dispersal, and low but spatially correlated early survivorship. The sweepstakes-like reproductive success of the planktotrophic species could allow a few related females to populate hundreds of kilometres of coastline and may explain their substantially larger temporal genetic variance but lower spatial genetic variance relative to the direct-developing species.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号