首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   179篇
  免费   20篇
  2020年   1篇
  2019年   3篇
  2018年   3篇
  2017年   4篇
  2016年   2篇
  2015年   5篇
  2014年   5篇
  2013年   4篇
  2012年   9篇
  2011年   11篇
  2010年   4篇
  2009年   7篇
  2008年   5篇
  2007年   4篇
  2006年   5篇
  2005年   6篇
  2004年   4篇
  2003年   2篇
  2002年   9篇
  2001年   8篇
  2000年   6篇
  1999年   11篇
  1998年   6篇
  1997年   8篇
  1996年   4篇
  1994年   1篇
  1993年   1篇
  1992年   6篇
  1991年   5篇
  1990年   2篇
  1989年   7篇
  1988年   4篇
  1987年   6篇
  1986年   3篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
  1982年   1篇
  1980年   1篇
  1979年   1篇
  1978年   3篇
  1977年   3篇
  1976年   2篇
  1975年   2篇
  1974年   2篇
  1973年   2篇
  1972年   5篇
  1966年   2篇
排序方式: 共有199条查询结果,搜索用时 78 毫秒
41.
During eukaryotic cell division, the sister chromatids of duplicated chromosomes are pulled apart by microtubules, which connect via kinetochores. The kinetochore is a multiprotein structure that links centromeres to microtubules, and that emits molecular signals in order to safeguard the equal distribution of duplicated chromosomes over daughter cells. Although microtubule‐mediated chromosome segregation is evolutionary conserved, kinetochore compositions seem to have diverged. To systematically inventory kinetochore diversity and to reconstruct its evolution, we determined orthologs of 70 kinetochore proteins in 90 phylogenetically diverse eukaryotes. The resulting ortholog sets imply that the last eukaryotic common ancestor (LECA) possessed a complex kinetochore and highlight that current‐day kinetochores differ substantially. These kinetochores diverged through gene loss, duplication, and, less frequently, invention and displacement. Various kinetochore components co‐evolved with one another, albeit in different manners. These co‐evolutionary patterns improve our understanding of kinetochore function and evolution, which we illustrated with the RZZ complex, TRIP13, the MCC, and some nuclear pore proteins. The extensive diversity of kinetochore compositions in eukaryotes poses numerous questions regarding evolutionary flexibility of essential cellular functions.  相似文献   
42.
Lee KH  Holl MM 《Biopolymers》2011,95(6):401-409
Molecular dynamics simulations were carried out to calculate the free energy change difference of two collagen-like peptide models for Gly --> Ser mutations causing two different osteogenesis imperfecta phenotypes. These simulations were performed to investigate the impact of local amino acid sequence environment adjacent to a mutation site on the stability of the collagen. The average free energy differences for a Gly --> Ser mutant relative to a wild type are 3.4 kcal/mol and 8.2 kcal/mol for a nonlethal site and a lethal site, respectively. The free energy change differences of mutant containing two Ser residues relative to the wild type at the nonlethal and lethal mutation sites are 4.6 and 9.8 kcal/mol, respectively. Although electrostatic interactions stabilize mutants containing one or two Ser residues at both mutation sites, van der Waals interactions are of sufficient magnitude to cause a net destabilization. The presence of Gln and Arg near the mutation site, which contain large and polar side chains, provide more destabilization than amino acids containing small and nonpolar side chains.  相似文献   
43.
Phosphofructokinase 1 (PFK) is a multisubunit allosteric enzyme that catalyzes the principal regulatory step in glycolysis—the phosphorylation of fructose 6-phosphate to fructose 1,6-bisphosphate by ATP. The activity of eukaryotic PFK is modulated by a number of effectors in response to the cell's needs for energy and building blocks for biosynthesis. The crystal structures of eukaryotic PFKs—from Saccharomyces cerevisiae and rabbit skeletal muscle—demonstrate how successive gene duplications and fusion are reflected in the protein structure and how they allowed the evolution of new functionalities. The basic framework inherited from prokaryotes is conserved, and additional levels of structural and functional complexity have evolved around it. Analysis of protein-ligand complexes has shown how PFK is activated by fructose 2,6-bisphosphate (a powerful PFK effector found only in eukaryotes) and reveals a novel nucleotide binding site. Crystallographic results have been used as the basis for structure-based effector design.  相似文献   
44.
The vaccinia virus E3L gene codes for double-stranded RNA (dsRNA) binding proteins which can prevent activation of the dsRNA-dependent, interferon-induced protein kinase PKR. Activated PKR has been shown to induce apoptosis in HeLa cells. HeLa cells infected with vaccinia virus with the E3L gene deleted have also been shown to undergo apoptosis, whereas HeLa cells infected with wild-type vaccinia virus do not. In this report, using virus recombinants expressing mutant E3L products or alternative dsRNA binding proteins, we show that suppression of induction of apoptosis correlates with functional binding of proteins to dsRNA. Infection of HeLa cells with ts23, which leads to synthesis of increased dsRNA at restrictive temperature, induced apoptosis at restrictive but not permissive temperatures. Treatment of cells with cytosine arabinoside, which blocks the late buildup of dsRNA in vaccinia virus-infected cells, prevented induction of apoptosis by vaccinia virus with E3L deleted. Cells transfected with dsRNA in the absence of virus infection also underwent apoptosis. These results suggest that dsRNA is a trigger that can initiate a suicide response in virus-infected and perhaps uninfected cells.  相似文献   
45.
Two DNA sequences that appear to be homologous to large-subunit mitochondrial ribosomal RNA genes have been identified in the stone crabs Menippe mercenaria and M. adina. Amplification from whole genomic DNA by polymerase chain reaction (PCR) with oligonucleotide primers based on conserved portions of large-subunit mitochondrial rRNA genes consistently amplified two products of similar length (565 and 567 bp). These products differed at 3% of their nucleotide bases, and could be distinguished by a HindIII site. Only one of these sequences (designated the A sequence) was detected by PCR in purified mitochondrial DNA. The other (designated the B sequence) hybridized to total genomic DNA at a level consistent with a nuclear genome location. It is unlikely that the type B product would have been recognized as a nuclear copy by examination of its sequence alone. This is the first report of a mitochondrial gene sequence translocated into the nuclear genome of a crustacean.   相似文献   
46.
The molecular structure of cytoplasmic malate dehydrogenase from pig heart has been refined by alternating rounds of restrained least-squares methods and model readjustment on an interactive graphics system. The resulting structure contains 333 amino acids in each of the two subunits, 2 NAD molecules, 471 solvent molecules, and 2 large noncovalently bound molecules that are assumed to be sulfate ions. The crystallographic study was done on one entire dimer without symmetry restraints. Analysis of the relative position of the two subunits shows that the dimer does not obey exact 2-fold rotational symmetry; instead, the subunits are related by a 173 degrees rotation. The structure results in a R factor of 16.7% for diffraction data between 6.0 and 2.5 A, and the rms deviations from ideal bond lengths and angles are 0.017 A and 2.57 degrees, respectively. The bound coenzyme in addition to hydrophobic interactions makes numerous hydrogen bonds that either are directly between NAD and the enzyme or are with solvent molecules, some of which in turn are hydrogen bonded to the enzyme. The carboxamide group of NAD is hydrogen bonded to the side chain of Asn-130 and via a water molecule to the backbone nitrogens of Leu-157 and Asp-158 and to the carbonyl oxygen of Leu-154. Asn-130 is one of the corner residues in a beta-turn that contains the lone cis peptide bond in cytoplasmic malate dehydrogenase, situated between Asn-130 and Pro-131. The active site histidine, His-186, is hydrogen bonded from nitrogen ND1 to the carboxylate of Asp-158 and from its nitrogen NE2 to the sulfate ion bound in the putative substrate binding site. In addition to interacting with the active site histidine, this sulfate ion is also hydrogen bonded to the guanidinium group of Arg-161, to the carboxamide group of Asn-140, and to the hydroxyl group of Ser-241. It is speculated that the substrate, malate or oxaloacetate, is bound in the sulfate binding site with the substrate 1-carboxyl hydrogen bonded to the guanidinium group of Arg-161.  相似文献   
47.
48.
A prokaryotic expression vector containing the rec A promoter and a translational enhancer element from the gene 10 leader of bacteriophage T7 was used to direct efficient synthesis of rat intestinal fatty acid binding protein (I-FABP) in E. coli. Expression of I-FABP in E. coli has no apparent, deleterious effects on the organism. High levels of expression of I-FABP mRNA in supE+ strains of E. coli, such as JM101, is associated with suppression of termination at its UGA stop codon. This can be eliminated by using a sup-Estrain as MG1655 and by site-directed mutagenesis of the cDNA to create an in frame UAA stop codon. E. coli-derived rat I-FABP lacks its initiator Met residues. It has been crystallized with and without bound palmitate. High resolution x-ray crystallographic studies of the 131 residue apo- and holo-proteins have revealed the following. I-FABP contains 10 anti-parallel -strands organized into two orthogonally situated -sheets. The overall conformation of the protein resembles that of a clam — hence the term -clam. The bound ligand is located in the interior of the protein. Its carboxylate group forms part of a unique five member hydrogen bonding network consisting of two ordered solvent molecules as well as the side chains of Arg106 and Gln115. The hydrocarbon chain of the bound C16:0 fatty acid has a distinctive bent conformation with a slight left-handed helical twist. This conformation is maintained by interactions with the side chains of a number of hydrophobic and aromatic amino acids. Apo-I-FABP has a similar overall conformation to holo-I-FABP indicating that the -clam structure is stable even without bound ligand. The space occupied by bound ligand in the core of the holo-protein is occupied by additional ordered solvent molecules in the apo-protein. Differences in the side chain orientations pf several residues located over a potential opening to the cores of the apo- and holo-proteins suggest that solvent may play an important role in the binding mechanism. Comparison of the C coordinates of apo- and holo-I-FABP with those of other proteins indicates it is a member of a superfamily that currently includes (i) 10 mammalian intracellular lipid binding proteins, (ii) the photoactive yellow protein from the purple photoautotrophic bacterium Ectothiorhodospira halophila and (iii) a group of extracellular lipid binding proteins from a diverse number of phyla that have a common barrel consisting of 8 anti-parallel -strands stacked in two nearly orthogonal sheets. In summary, E. coli-derived I-FABP not only represents a useful model for assessing the atomic details of fatty acid-protein interactions and the mechanisms which regulate acquisition and release of this type of ligand, but also structure/function relationships in other superfamily members.Abbreviations I-FABP Intestinal Fatty Acid Binding Protein - r.m.s root mean square  相似文献   
49.
Rat cellular retinol-binding protein II (CRBP II) is a member of a family of cytoplasmic proteins which bind hydrophobic ligands. CRBP II is thought to participate in the intestinal absorption and intracellular metabolism of retinoids. We have previously described the crystallization of a homologous rat intestinal fatty acid-binding protein (I-FABP) isolated from Escherichia coli containing a suitably constructed prokaryotic expression vector (Sacchettini, J. C., Meininger, T. A., Lowe, J. B., Gordon, J. I., and Banaszak, L. J., J. Biol. Chem. 262, 5428-5430). We have now efficiently expressed rat CRBP II in E. coli. The E. coli-derived protein, which does not contain any bound retinoid, has been purified and crystals grown from solutions of polyethylene glycol 4000. Crystals of apo-CRBP II are triclinic, space group P1, a = 36.8 A, b = 64.0 A, c = 30.4 A; alpha = 92.8 degrees, beta = 113.5 degrees, gamma = 90.1 degrees. Each unit cell contains two molecules of the 134-residue apoprotein. X-ray diffraction data suggest that the unit cell parameters of crystalline apo-CRBP II resemble those of I-FABP. Comparison of the tertiary structures of E. coli-derived rat I-FABP and CRBP II should provide insights about how these proteins evolved to bind different hydrophobic ligands.  相似文献   
50.
In a previous study, we reported the apparent similarity between a low resolution electron density map of mitochondrial malate dehydrogenase and a model of cytoplasmic malate dehydrogenase (Roderick, S. L., and Banaszak, L. J. (1983) J. Biol. Chem. 258, 11636-11642). We have since determined the polypeptide chain conformation and coenzyme binding site of crystalline porcine heart mitochondrial malate dehydrogenase by x-ray diffraction methods. The crystals from which the diffraction data was obtained contain four subunits of the enzyme arranged as a "dimer of dimers," resulting in a crystalline tetramer which possesses 222 molecular symmetry. The overall polypeptide chain conformation of the enzyme, the location of the coenzyme binding site, and the preliminary location of several catalytically important residues have confirmed the structural similarity of mitochondrial malate dehydrogenase to cytoplasmic malate dehydrogenase and lactate dehydrogenase.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号