首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   179篇
  免费   20篇
  199篇
  2020年   1篇
  2019年   3篇
  2018年   3篇
  2017年   4篇
  2016年   2篇
  2015年   5篇
  2014年   5篇
  2013年   4篇
  2012年   9篇
  2011年   11篇
  2010年   4篇
  2009年   7篇
  2008年   5篇
  2007年   4篇
  2006年   5篇
  2005年   6篇
  2004年   4篇
  2003年   2篇
  2002年   9篇
  2001年   8篇
  2000年   6篇
  1999年   11篇
  1998年   6篇
  1997年   8篇
  1996年   4篇
  1994年   1篇
  1993年   1篇
  1992年   6篇
  1991年   5篇
  1990年   2篇
  1989年   7篇
  1988年   4篇
  1987年   6篇
  1986年   3篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
  1982年   1篇
  1980年   1篇
  1979年   1篇
  1978年   3篇
  1977年   3篇
  1976年   2篇
  1975年   2篇
  1974年   2篇
  1973年   2篇
  1972年   5篇
  1966年   2篇
排序方式: 共有199条查询结果,搜索用时 9 毫秒
21.
Various sites of ferricyanide reduction were studied in spinach chloroplasts. It was found that in the presence of dibromothymoquinone a fraction of ferricyanide reduction was dibromothymoquinone sensitive, implying that ferricyanide can be reduced by photosystem I as well as photosystem II. To separate ferricyanide reduction sites in photosystem II, orthophenanthroline and dichlorophenyl dimethylurea inhibitions were compared at various pH's. It was noted that at low pH ferricyanide reduction was not completely inhibited by orthophenanthroline. At high pH's, however, inhibition of ferricyanide reduction by orthophenanthroline was complete. It was found that varying concentration of orthophenanthroline at a constant pH showed different degrees of inhibition. In the study of ferricyanide reduction by photosystem II various treatments affecting plastocyanin were performed. It was found that Tween-20 or KCN treatments which inactivated plastocyanin did not completely inactivate ferricyanide reduction. These data support the conclusion that ferricyanide accepts electrons both before and after plastoquinone in photosystem II.Abbreviations DCMU 3-(3,4-dichlorophenyl)-1,1-dimethyurea - MV methyl viologen - DBMIB 2,5-dibromothymoquinone - DMBQ 2,6-dimethyl benzoquinone - OP 1,10-orthophenanthroline - TMPD tetramethyl-p-phenylenediamine - PS 1 photosystem I - PS II photosystem II - SN sucrose-sodium chloride chloroplasts Supported by NSF Grant BMS 74-19689.  相似文献   
22.
The complete amino acid sequence of mitochondrial malate dehydrogenase from rat heart has been determined by chemical methods. Peptides used in this study were purified after digestions with cyanogen bromide, trypsin, endoproteinase Lys C, and staphylococcal protease V-8. The amino acid sequence of this mature enzyme is compared with that of the precursor form, which includes the primary structure of the transit peptide. The transit peptide is required for incorporation into mitochondria and appears to be homologous to the NH2-terminal arm of a related cytoplasmic enzyme, pig heart lactate dehydrogenase. The amino acid differences between the rat heart and pig heart mitochondrial malate dehydrogenases are analyzed in terms of the three-dimensional structure of the latter. Only 12/314 differences are found; most are conservative changes, and all are on or near the surface of the enzyme. We propose that the transit peptide is located on the surface of the mitochondrial malate dehydrogenase precursor.  相似文献   
23.
Genotypic variation in major components of the efficiency of nitrogen utilization and photosynthetic activity of flag leaves among old (released 1881-1963) and modern (released 1969-2003) cultivars of winter wheat was studied in field conditions under varied N fertilization levels (110, 90 and 80 kg N ha-1). Significant genotypic differences were observed for all characters. Their heritabilities ranged from 0.37 to 0.93 and were the lowest for the leaf efficiency of gas exchange, photosynthetic rate, straw N content and the economic index of N utilization efficiency (NUE). Some modern cultivars exhibited an enhanced tolerance to N shortage and several attributes of efficient N utilization (e.g. later senescing and more photosynthetically active flag leaves, increased ability to redistribute N into grains). The genotypes may serve as donors of appropriate characteristics for breeding. The observed cultivar-by-fertilization interactions suggest, however, that evaluations under diverse fertilization regimes may be necessary when searching for improved wheat efficiency and adaptation to less favourable environments.  相似文献   
24.
The amino acid sequence of cytoplasmic malate dehydrogenase (sMDH) has been determined by a combination of X-ray crystallographic and chemical sequencing methods. The initial molecular model incorporated an "X-ray amino acid sequence" that was derived primarily from an evaluation of a multiple isomorphous replacement phased electron density map calculated at 2.5-A resolution. Following restrained least-squares crystallographic refinement, difference electron density maps were calculated from model phases, and attempts were made to upgrade the X-ray amino acid sequence. The method used to find the positions of peptides in the X-ray structure was similar to those used for studying protein homology and was shown to be successful for large fragments. For sMDH, X-ray methods by themselves were insufficient to derive a complete amino acid sequence, even with partial chemical sequence data. However, for this relatively large molecule at medium resolution, the electron density maps were of considerable help in determining the linear position of peptide fragments. The N-acetylated polypeptide chain of sMDH has 331 amino acids and has been crystallographically refined to an R factor of 19% for 2.5-A resolution diffraction data.  相似文献   
25.
The family of proteins accountable for the intracellular movement of lipids is characterized by a 10-stranded beta-barrel that forms an internalized cavity varying in size and binding preferences. The loop connecting beta-strands E and F (the fifth and sixth strands) is the most striking conformational difference between adipocyte lipid binding protein (ALBP; fatty acids) and cellular retinoic acid binding protein type I (CRABP I). A three-residue mutation was made in wild-type (WT)-ALBP [ALBP with a three-residue mutation (EF-ALBP)] to mimic CRABP I. Crystal structures of ligand-free and EF-ALBP with bound oleic acid were solved to resolutions of 1.5 A and 1.7 A, respectively, and compared with previous studies of WT-ALBP. The changes in three residues of one loop of the protein appear to have altered the positioning of the C18 fatty acid, as observed in the electron density of EF-ALBP. The crystallographic studies made it possible to compare the protein conformation and ligand positioning with those found in the WT protein. Although the cavity binding sites in both the retinoid and fatty acid binding proteins are irregular, the ligand atoms appear to favor a relatively planar region of the cavities. Preliminary chemical characterization of the mutant protein indicated changes in some binding properties and overall protein stability.  相似文献   
26.
27.
Results are presented from experimental studies of the correlation between X-ray and neutron emissions generated in the implosion of a deuteron plasma shell onto an Al wire. The experiments were carried out on the PF-1000 facility at currents of 1.5–1.8 MA. An Al wire 80 μm in diameter and 7–9 cm in length was placed at the end of the inner electrode. During the implosion of the plasma shell, Al K-shell X-rays were first emitted at the dip of the current derivative. After the X-ray pulse, a relatively stable corona with a diameter of 2–3 mm and lifetime of a few hundred nanoseconds formed around the wire. The presence of the wire did not considerably reduce the total neutron yield (at most 1011 neutrons per shot) in comparison to discharges without a wire. As a rule, the intensity of neutron emission was maximal a few tens of nanoseconds after the peak of X-ray emission. A detailed comparison of two shots with low and high neutron yields have shown that the neutron yield depends on the configuration and dynamics of the discharge. The possible influence of the self-generated axial component of the magnetic field on the development of the plasma focus and the acceleration of fast deuterons is discussed.  相似文献   
28.
Phosphofructokinase 1 (PFK) is a multisubunit allosteric enzyme that catalyzes the principal regulatory step in glycolysis—the phosphorylation of fructose 6-phosphate to fructose 1,6-bisphosphate by ATP. The activity of eukaryotic PFK is modulated by a number of effectors in response to the cell's needs for energy and building blocks for biosynthesis. The crystal structures of eukaryotic PFKs—from Saccharomyces cerevisiae and rabbit skeletal muscle—demonstrate how successive gene duplications and fusion are reflected in the protein structure and how they allowed the evolution of new functionalities. The basic framework inherited from prokaryotes is conserved, and additional levels of structural and functional complexity have evolved around it. Analysis of protein-ligand complexes has shown how PFK is activated by fructose 2,6-bisphosphate (a powerful PFK effector found only in eukaryotes) and reveals a novel nucleotide binding site. Crystallographic results have been used as the basis for structure-based effector design.  相似文献   
29.
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号