首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   696篇
  免费   35篇
  国内免费   10篇
  2023年   4篇
  2022年   7篇
  2021年   21篇
  2020年   5篇
  2019年   10篇
  2018年   18篇
  2017年   12篇
  2016年   24篇
  2015年   31篇
  2014年   38篇
  2013年   36篇
  2012年   61篇
  2011年   41篇
  2010年   39篇
  2009年   40篇
  2008年   42篇
  2007年   45篇
  2006年   27篇
  2005年   26篇
  2004年   32篇
  2003年   22篇
  2002年   14篇
  2001年   18篇
  2000年   18篇
  1999年   9篇
  1998年   5篇
  1997年   5篇
  1996年   4篇
  1995年   5篇
  1994年   5篇
  1992年   11篇
  1991年   6篇
  1990年   6篇
  1989年   3篇
  1988年   4篇
  1986年   4篇
  1985年   2篇
  1984年   4篇
  1983年   2篇
  1981年   3篇
  1979年   7篇
  1978年   3篇
  1974年   2篇
  1970年   4篇
  1968年   1篇
  1967年   2篇
  1965年   1篇
  1964年   1篇
  1962年   3篇
  1961年   1篇
排序方式: 共有741条查询结果,搜索用时 15 毫秒
61.
Fusarium head blight (FHB) and crown rot (CR) are two wheat diseases caused by the same Fusarium pathogens. Progress towards CR resistance could benefit from FHB-resistant germplasm if the same genes are involved in resistance to these two different diseases. Two independent studies were conducted to investigate the relationship between host resistances to these two diseases. In the first study 32 genotypes were assessed and no significant correlation between their reactions to FHB and CR was detected. The second study was based on a QTL analysis of a doubled haploid population derived from a variety with resistance to both diseases. Results from this study showed that loci conferring resistance to FHB and CR are located on different chromosomes. Together, these results suggest that, despite a common aetiology, different host genes are involved in the resistance against FHB and CR in wheat. Thus, although it is possible that genes affecting both diseases may exist in other germplasm or under different conditions, separate screening seems to be needed in identifying sources of CR resistance.  相似文献   
62.
Oxidative stress affecting lipid membranes is considered to be closely related to cardiovascular disease and brain ischemia. In this study, we designed and synthesized membrane-localizing TEMPO derivatives and demonstrated that one of these synthesized probes, compound 1, localized and detected oxidative stress in the cell membrane in an endotoxic model of a mouse macrophage-like cell line. Compound 1 is therefore a potentially useful probe for evaluating oxidative stress at the cell membrane.  相似文献   
63.
A fluorescent method was developed for the detection of unpaired and mismatched DNAs using a MutS-fluorophore conjugate. The fluorophore, 2-(4'-(iodoacetoamido)anilino) naphthalene-6-sulfonic acid (IAANS), was site-specifically attached to the 469 position of Thermus aquaticus (Taq.) MutS mutant (C42A/T469C). The fluorophore labeled residue located at the dimer interface of the protein undergoes a drastic conformational change upon binding with mismatched DNA. The close proximity of the two identical fluorescent molecules presumably causes the self-quenching of the fluorophore, since fluorescence emission of the biosensor decreases with increasing concentrations of mismatched DNA. The order of binding affinity for each unpaired and mismatched DNA obtained by this method was DeltaT (Kd=52 nM)>GT (62 nM)>DeltaC (130 nM)>CT (160 nM)>DeltaG (170 nM)>DeltaA (250 nM)>CC (720 nM)>AT (950 nM). This order is comparable to the previous results of the gel mobility shift assay. Thus, this method can be a simple, useful tool for elucidating the mechanism of DNA mismatch repair as well as a novel probe for detecting of genetic mutation.  相似文献   
64.
Biochemical and structural studies of co-translational folding, targeting and translocation depend on an efficient methodology to prepare ribosome nascent chain complexes (RNCs). Here we present our approach for the generation of homogenous and stable RNCs involving in vitro translation and affinity purification. Fusing the SecM arrest sequence, which tightly interacts with the ribosomal tunnel, to the nascent polypeptide chain significantly enhanced the stability of the RNCs. We have been able to increase the yield of the affinity purification step by engineering a tag with higher affinity. The RNCs generated with this approach have been successfully used to obtain 3D cryo-electron microscopic reconstructions of complexes with the signal recognition particle and the translocon. The established procedure is highly efficient and if scaled up could yield milligram amounts of RNCs sufficient for crystallization experiments.  相似文献   
65.
66.
The phosphoinositide 3-kinase–Akt signaling pathway is essential to many biological processes, including cell proliferation, survival, metabolism, and angiogenesis, under pathophysiological conditions. Although 3-phosphoinositide–dependent kinase 1 (PDK1) is a primary activator of Akt at the plasma membrane, the optimal activation mechanism remains unclear. We report that adhesion molecule with IgG-like domain 2 (AMIGO2) is a novel scaffold protein that regulates PDK1 membrane localization and Akt activation. Loss of AMIGO2 in endothelial cells (ECs) led to apoptosis and inhibition of angiogenesis with Akt inactivation. Amino acid residues 465–474 in AMIGO2 directly bind to the PDK1 pleckstrin homology domain. A synthetic peptide containing the AMIGO2 465–474 residues abrogated the AMIGO2–PDK1 interaction and Akt activation. Moreover, it effectively suppressed pathological angiogenesis in murine tumor and oxygen-induced retinopathy models. These results demonstrate that AMIGO2 is an important regulator of the PDK1–Akt pathway in ECs and suggest that interference of the PDK1–AMIGO2 interaction might be a novel pharmaceutical target for designing an Akt pathway inhibitor.  相似文献   
67.
The calcium-sensing receptor antagonist (CaSR) has been recognized as a promising target of anabolic agents for treating osteoporosis. In the course of developing a new drug candidate for osteoporosis, we found tetrahydropyrazolopyrimidine derivative 1 to be an orally active CaSR antagonist that stimulated transient PTH secretion in rats. However, compound 1 showed poor physical and chemical stability. In order to work out this compound's chemical stability and further understand its in vivo efficacy, we focused on modifying the 2-position of the tetrahydropyrazolopyrimidine. As a result of chemical modification, we discovered (5R)-N-[1-ethyl-1-(4-ethylphenyl)propyl]-2,7,7-trimethyl-5-phenyl-4,5,6,7-tetrahydropyrazolo[1,5-a]pyrimidine-3-carboxamide monotosylate 10m (TAK-075), which showed improved solubility, chemical stability, and in vivo efficacy. Furthermore, we describe that evaluating the active metabolite is important during repeated treatment with short-acting CaSR antagonists.  相似文献   
68.
Lapatinib is the only clinically available agent for the treatment of patients with human epidermal growth factor receptor-2 (HER-2) positive tumors that have progressed on treatment with trastuzumab, taxanes and anthracyclines. Moreover, when given with letrozole in postmenopausal patients with estrogen receptor (ER) and HER-2 positive disease it induces clinically meaningful benefit. Recently presented neoadjuvant data suggests an important place for the combination of trastuzumab and lapatinib in the therapy of early HER-2 positive breast cancer. This article reviews the current status and future perspectives of lapatinib.  相似文献   
69.
70.
Investigation of factors that modulate amyloid formation of proteins is important to understand and mitigate amyloid-related diseases. To understand the role of electrostatic interactions and the effect of ionic cosolutes, especially anions, on amyloid formation, we have investigated the effect of salts such as NaCl, NaI, NaClO(4), and Na(2)SO(4) on the amyloid fibril growth of beta(2)-microglobulin, the protein involved in dialysis-related amyloidosis. Under acidic conditions, these salts exhibit characteristic optimal concentrations where the fibril growth is favored. The presence of salts leads to an increase in hydrophobicity of the protein as reported by 8-anilinonaphthalene-1-sulfonic acid, indicating that the anion interaction leads to the necessary electrostatic and hydrophobic balance critical for amyloid formation. However, high concentrations of salts tilt the balance to high hydrophobicity, leading to partitioning of the protein to amorphous aggregates. Such amorphous aggregates are not competent for fibril growth. The order of anions based on the lowest concentration at which fibril formation is favored is SO(4)(2)(-) > ClO(4)(-) > I(-) > Cl(-), consistent with the order of their electroselectivity series, suggesting that preferential anion binding, rather than general ionic strength effect, plays an important role in the amyloid fibril growth. Anion binding is also found to stabilize the amyloid fibrils under acidic condition. Interestingly, sulfate promotes amyloid growth of beta(2)-microglobulin at pH between 5 and 6, closer to its isoelectric point. Considering the earlier studies on the role of glycosaminoglycans and proteoglycans (i.e., sulfated polyanions) on amyloid formation, our study suggests that preferential interaction of sulfate ions with amyloidogenic proteins may have biological significance.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号