首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   118篇
  免费   7篇
  2023年   1篇
  2021年   4篇
  2020年   1篇
  2018年   4篇
  2016年   5篇
  2015年   5篇
  2014年   5篇
  2013年   7篇
  2012年   7篇
  2011年   5篇
  2010年   11篇
  2009年   3篇
  2008年   8篇
  2007年   4篇
  2006年   3篇
  2005年   6篇
  2004年   2篇
  2003年   2篇
  2001年   3篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1995年   1篇
  1994年   2篇
  1992年   2篇
  1991年   2篇
  1988年   2篇
  1987年   4篇
  1985年   1篇
  1982年   2篇
  1981年   1篇
  1979年   3篇
  1977年   2篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1973年   1篇
  1972年   1篇
  1970年   3篇
  1969年   1篇
  1968年   1篇
  1959年   1篇
  1957年   1篇
  1954年   2篇
排序方式: 共有125条查询结果,搜索用时 15 毫秒
101.
The evolutionary synthesis, the standard 20th century view of how evolutionary change occurs, is based on selection, heritable phenotypic variation and a very simple view of genes. It is therefore unable to incorporate two key aspects of modern molecular knowledge: first is the richness of genomic variation, so much more complicated than simple mutation, and second is the opaque relationship between the genotype and its resulting phenotype. Two new and important books shed some light on how we should view evolutionary change now. Evolution: a view from the 21 st century by J.A. Shapiro (2011, FT Press Science, New Jersey, USA. pp. 246. $34.99.) examines the richness of genomic variation and its implications. Transformations of Lamarckism: from Subtle Fluids to Molecular Biology edited by S.B. Gissis &; E. Jablonka (2011, MIT Press, Cambridge, USA. pp. 457) includes some 40 papers that anyone with an interest in the history of evolutionary thought and the relationship between the environment and the genome will want to read. This review discusses both books within the context of contemporary evolutionary thinking and points out that neither really comes to terms with today's key systems-biology question: how does mutation-induced variation in a molecular network generate variation in the resulting phenotype?  相似文献   
102.
103.
1. Trail‐sharing between different ant species is rare and restricted to a small number of species pairs. Its underlying mechanisms are largely unknown. For trail‐sharing to occur, two factors are required: (i) one or both species must recognise the other species or its pheromone trails and (ii) both species must tolerate each other to a certain extent to allow joint use of the trail. A species that follows another's trails can efficiently exploit the other's information on food sources contained in the pheromone trails. Hence, food competition and thus aggressive interactions between a species following another's trail and the species being followed, seem likely. 2. In the present study, we investigated interspecific trail following and interspecific aggression in trail sharing associations (i) among Polyrhachis ypsilon, Camponotus saundersi, and Dolichoderus cuspidatus, and (ii) among Camponotus rufifemur and Crematogaster modiglianii. We tested whether trail‐sharing species follow each other's pheromone trails, and whether the ants tolerated or attacked their trail‐sharing partners. In both associations, we confronted workers with pheromone trails of their associated species, and, for the former association, measured interspecific aggression among the trail‐sharing species. 3. In our assays, D. cuspidatus and C. rufifemur regularly followed heterospecific pheromone trails of P. ypsilon and C. modiglianii, respectively. However, only few workers of the remaining species followed heterospecific pheromone trails. Thus, shared trails of P. ypsilon and C. saundersi cannot be explained by interspecific trail‐following. 4. Interspecific aggression among P. ypsilon, C. saundersi, and D. cuspidatus was strongly asymmetric, C. saundersi being submissive to the other two. All three species differentiated between heterospecific workers from the same or another site, suggesting habituation to the respective trail‐sharing partners. We therefore hypothesise that differential tolerance by dominant ant species may be mediated by selective habituation towards submissive species and this way determines the assembly of trail‐sharing associations.  相似文献   
104.
Cryobanking, the freezing of biological specimens to maintain their integrity for a variety of anticipated and unanticipated uses, offers unique opportunities to advance the basic knowledge of biological systems and their evolution. Notably, cryobanking provides a crucial opportunity to support conservation efforts for endangered species. Historically, cryobanking has been developed mostly in response to human economic and medical needs — these needs must now be extended to biodiversity conservation. Reproduction technologies utilizing cryobanked gametes, embryos and somatic cells are already vital components of endangered species recovery efforts. Advances in modern biological research (e.g. stem cell research, genomics and proteomics) are already drawing heavily on cryobanked specimens, and future needs are anticipated to be immense. The challenges of developing and applying cryobanking for a broader diversity of species were addressed at an international conference held at Trier University (Germany) in June 2008. However, the magnitude of the potential benefits of cryobanking stood in stark contrast to the lack of substantial resources available for this area of strategic interest for biological science — and society at large. The meeting at Trier established a foundation for a strong global incentive to cryobank threatened species. The establishment of an Amphibian Ark cryobanking programme offers the first opportunity for global cooperation to achieve the cryobanking of the threatened species from an entire vertebrate class.  相似文献   
105.

Introduction

The major histocompatibility complex (H-2d) and non-major histocompatibility complex genetic backgrounds make the BALB/c strain highly susceptible to inflammatory arthritis and spondylitis. Although different BALB/c colonies develop proteoglycan-induced arthritis and proteoglycan-induced spondylitis in response to immunization with human cartilage proteoglycan, they show significant differences in disease penetrance despite being maintained by the same vendor at either the same or a different location.

Methods

BALB/c female mice (24 to 26 weeks old after 4 weeks of acclimatization) were immunized with a suboptimal dose of cartilage proteoglycan to explore even minute differences among 11 subcolonies purchased from five different vendors. In vitro-measured T-cell responses, and serum cytokines and (auto)antibodies were correlated with arthritis (and spondylitis) phenotypic scores. cDNA microarrays were also performed using spleen cells of naïve and immunized BALB/cJ and BALB/cByJ mice (both colonies from The Jackson Laboratory, Bar Harbor, ME, USA), which represent the two major BALB/c sublines.

Results

The 11 BALB/c colonies could be separated into high (n = 3), average (n = 6), and low (n = 2) responder groups based upon their arthritis scores. While the clinical phenotypes showed significant differences, only a few immune parameters correlated with clinical or histopathological abnormalities, and seemingly none of them affected differences found in altered clinical phenotypes (onset time, severity or incidence of arthritis, or severity and progression of spondylitis). Affymetrix assay (Affymetrix, Santa Clara, CA, USA) explored 77 differentially expressed genes (at a significant level, P < 0.05) between The Jackson Laboratory's BALB/cJ (original) and BALB/cByJ (transferred from the National Institutes of Health, Bethesda, MD, USA). Fourteen of the 77 differentially expressed genes had unknown function; 24 of 77 genes showed over twofold differences, and only 8 genes were induced by immunization, some in both colonies.

Conclusions

Using different subcolonies of the BALB/c strain, we can detect significant differences in arthritis phenotypes, single-nucleotide polymorphisms (SNPs), and a large number of differentially expressed genes, even in non-immunized animals. A number of the known genes (and SNPs) are associated with immune responses and/or arthritis in this genetically arthritis-prone murine strain, and a number of genes of as-yet-unknown function may affect or modify clinical phenotypes of arthritis and/or spondylitis.  相似文献   
106.
Retinoid signaling has been implicated in embryonic stem cell differentiation. Here we present a systematic analysis of gene expression changes in mouse embryonic stem cells (mESCs), during their spontaneous differentiation into embryoid bodies and the effect of all-trans retinoic acid (ATRA) on this process. We show that retinoic acid is present in the serum and is sufficient to activate retinoid signaling at a basal level in undifferentiated mESCs. This signal disappears during embryoid body formation. However exogenously added ATRA resets the spontaneous differentiation programs in embryoid bodies and initiates a distinct genetic program. These data suggest that retinoid signaling not only promotes a particular pathway but also acts as a context dependent general coordinator of the differentiation states in embryonic stem cells.  相似文献   
107.
A novel variety of 4.5 S RNA from Codium fragile chloroplasts   总被引:2,自引:0,他引:2  
An unusual new chloroplast RNA has been isolated and sequenced in the siphonous green alga, Codium fragile. This RNA is 94 nucleotides in length, has an unusually high A + U content (73%), contains no modified residues, and is as abundant as a single chloroplast tRNA species. Although this RNA is 4.5 S in size, it bears little sequence homology to the widely found and highly conserved 4.5 S RNAs present in the chloroplasts of higher plants. Nevertheless, this RNA may indeed by analogous to the higher plant 4.5 S RNAs, since the Codium 4.5 S RNA has the potential to form a secondary structure which in many respects is remarkably similar to that of known chloroplast 4.5 S RNAs, and hybridization data strongly suggests that the 4.5 S RNA is part of the ribosomal RNA operon, as is the case in higher plant chloroplasts.  相似文献   
108.
109.
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号