首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   307篇
  免费   31篇
  2022年   2篇
  2021年   7篇
  2020年   4篇
  2019年   3篇
  2018年   7篇
  2017年   6篇
  2016年   6篇
  2015年   12篇
  2014年   14篇
  2013年   16篇
  2012年   22篇
  2011年   14篇
  2010年   13篇
  2009年   12篇
  2008年   13篇
  2007年   9篇
  2006年   11篇
  2005年   8篇
  2004年   9篇
  2003年   7篇
  2002年   14篇
  2001年   4篇
  2000年   9篇
  1999年   4篇
  1998年   4篇
  1997年   7篇
  1996年   4篇
  1995年   2篇
  1994年   8篇
  1993年   7篇
  1992年   12篇
  1991年   9篇
  1990年   3篇
  1989年   5篇
  1988年   9篇
  1987年   3篇
  1986年   8篇
  1985年   5篇
  1984年   4篇
  1983年   3篇
  1982年   2篇
  1981年   2篇
  1980年   2篇
  1975年   1篇
  1973年   2篇
  1972年   1篇
  1968年   1篇
  1967年   1篇
  1966年   1篇
  1942年   1篇
排序方式: 共有338条查询结果,搜索用时 734 毫秒
21.
There is now considerable evidence that climate change is disrupting the phenology of key pollinator species. The recently reported UK winter activity of the bumblebee Bombus terrestris brings a novel set of thermal challenges to bumblebee workers that would typically only be exposed to summer conditions. Here we assess the ability of workers to survive acute and chronic cold stress (via lower lethal temperatures and lower lethal times at 0°C), the capacity for rapid cold hardening (RCH) and the influence of diet (pollen versus nectar consumption) on supercooling points (SCP). Comparisons are made with chronic cold stress indices and SCPs in queen bumblebees. Results showed worker bees were able to survive acute temperatures likely to be experienced in a mild winter, with queens significantly more tolerant to chronic cold temperature stress. The first evidence of RCH in any Hymenoptera is shown. In addition, dietary manipulation indicated the consumption of pollen significantly increased SCP temperature. These results are discussed in the light of winter active bumblebees and climate change.  相似文献   
22.
Electronic structure, 1H NMR and infrared spectra of diquat (6,7-dihydrodipyrido[1,2-b:1′,2′-e] pyrazine-5,8-diium or DQ2+) encapsulated by cucurbit[n]uril (n?=?7,8) hosts are obtained using the density functional theory. Theoretical calculations have shown that both CB[7] or CB[8] host possesses strong affinity toward DQ2+ compared to its reduced cation or neutral species. Calculated 1H NMR spectra reveal that Hα protons on bi-pyridinium rings of DQ2+@CB[8] complex are de-shielded owing to C=O?H interactions. On the other hand aromatic (Hβ and Hδ) of DQ2+ within the CB[8] cavity exhibit significant shielding. The complexation of CB[8] with DQ2+ splits the carbonyl stretching vibration (1788 cm?1) into two distinct vibrations which correspond to 1765 cm?1 arising from hydrogen bonded carbonyls and the 1792 cm?1 band from non-interacting ones. Further, the CN stretching vibration in DQ2+ exhibits a frequency blue-shift of 6 cm?1 on its encapsulation within the CB[8] cavity. The direction of frequency shift has been explained on the basis of natural bond orbital analyses.
Figure
Diquat-cucurbituril complexes  相似文献   
23.
In the Maritime Antarctic and High Arctic, soil microhabitat temperatures throughout the year typically range between ?10 and +5 °C. However, on occasion, they can exceed 20 °C, and these instances are likely to increase and intensify as a result of climate warming. Remaining active under both cool and warm conditions is therefore important for polar terrestrial invertebrates if they are to forage, reproduce and maximise their fitness. In the current study, lower and upper thermal activity thresholds were investigated in the polar Collembola, Megaphorura arctica and Cryptopygus antarcticus, and the mite, Alaskozetes antarcticus. Specifically, the effect of acclimation on these traits was explored. Sub-zero activity was exhibited in all three species, at temperatures as low as ?4.6 °C in A. antarcticus. At high temperatures, all three species had capacity for activity above 30 °C and were most active at 25 °C. This indicates a comparable spread of temperatures across which activity can occur to that seen in temperate and tropical species, but with the activity window shifted towards lower temperatures. In all three species following one month acclimation at ?2 °C, chill coma (=the temperature at which movement and activity cease) and the critical thermal minimum (=low temperature at which coordination is no longer shown) occurred at lower temperatures than for individuals maintained at +4 °C (except for the CTmin of M. arctica). Individuals acclimated at +9 °C conversely showed little change in their chill coma or CTmin. A similar trend was demonstrated for the heat coma and critical thermal maximum (CTmax) of all species. Following one month at ?2 °C, the heat coma and CTmax were reduced as compared with +4 °C reared individuals, whereas the heat coma and CTmax of individuals acclimated at +9 °C showed little adjustment. The data obtained suggest these invertebrates are able to take maximum advantage of the short growing season and have some capacity, in spite of limited plasticity at high temperatures, to cope with climate change.  相似文献   
24.
Cellular protein synthesis is initiated with methionine in eukaryotes with few exceptions. Methionine aminopeptidases (MetAPs) which catalyze the process of N-terminal methionine excision are essential for all organisms. In mammals, type 2 MetAP (MetAP2) is known to be important for angiogenesis, while type 1 MetAP (MetAP1) has been shown to play a pivotal role in cell proliferation. Our previous high-throughput screening of a commercial compound library uncovered a novel class of inhibitors for both human MetAP1 (HsMetAP1) and human MetAP2 (HsMetAP2). This class of inhibitors contains a pyridinylpyrimidine core. To understand the structure–activity relationship (SAR) and to search for analogues of 2 with greater potency and higher HsMetAP1-selectivity, a total of 58 analogues were acquired through either commercial source or by in-house synthesis and their inhibitory activities against HsMetAP1 and HsMetAP2 were determined. Through this systematic medicinal chemistry analysis, we have identified (1) 5-chloro-6-methyl-2-pyridin-2-ylpyrimidine as the minimum element for the inhibition of HsMetAP1; (2) 5′-chloro as the favored substituent on the pyridine ring for the enhanced potency against HsMetAP1; and (3) long C4 side chains as the essentials for higher HsMetAP1-selectivity. At the end of our SAR campaign, 25b, 25c, 26d and 30a30c are among the most selective and potent inhibitors of purified HsMetAP1 reported to date. In addition, we also performed crystallographic analysis of one representative inhibitor (26d) in complex with N-terminally truncated HsMetAP1.  相似文献   
25.
Escherichia coli O104:H4, an hybrid pathotype of Shiga toxigenic and enteroaggregative E. coli, involved in a major foodborne outbreak in Germany in 2011, has not been detected in cattle feces. Serogroup O104 with H type other than H4 has been reported to cause human illnesses, but their prevalence and characteristics in cattle have not been reported. Our objectives were to determine the prevalence of E. coli O104 in feces of feedlot cattle, by culture and PCR detection methods, and characterize the isolated strains. Rectal fecal samples from a total of 757 cattle originating from 29 feedlots were collected at a Midwest commercial slaughter plant. Fecal samples, enriched in E. coli broth, were subjected to culture and PCR methods of detection. The culture method involved immunomagnetic separation with O104-specific beads and plating on a selective chromogenic medium, followed by serogroup confirmation of pooled colonies by PCR. If pooled colonies were positive for the wzxO104 gene, then colonies were tested individually to identify wzxO104-positive serogroup and associated genes of the hybrid strains. Extracted DNA from feces were also tested by a multiplex PCR to detect wzxO104-positive serogroup and associated major genes of the O104 hybrid pathotype. Because wzxO104 has been shown to be present in E. coli O8/O9/O9a, wzxO104-positive isolates and extracted DNA from fecal samples were also tested by a PCR targeting wbdDO8/O9/O9a, a gene specific for E. coli O8/O9/O9a serogroups. Model-adjusted prevalence estimates of E. coli O104 (positive for wzxO104 and negative for wbdDO8/O9/O9a) at the feedlot level were 5.7% and 21.2%, and at the sample level were 0.5% and 25.9% by culture and PCR, respectively. The McNemar’s test indicated that there was a significant difference (P < 0.01) between the proportions of samples that tested positive for wzxO104 and samples that were positive for wzxO104, but negative for wbdDO8/O9/O9a by PCR and culture methods. A total of 143 isolates, positive for the wzxO104, were obtained in pure culture from 146 positive fecal samples. Ninety-two of the 143 isolates (64.3%) also tested positive for the wbdDO8/O9/O9a, indicating that only 51 (35.7%) isolates truly belonged to the O104 serogroup (positive for wzxO104 and negative for wbdDO8/O9/O9a). All 51 isolates tested negative for eae, and 16 tested positive for stx1 gene of the subtype 1c. Thirteen of the 16 stx1-positive O104 isolates were from one feedlot. The predominant serotype was O104:H7. Pulsed-field gel electrophoresis analysis indicated that stx1-positive O104:H7 isolates had 62.4% homology to the German outbreak strain and 67.9% to 77.5% homology to human diarrheagenic O104:H7 strains. The 13 isolates obtained from the same feedlot were of the same PFGE subtype with 100% Dice similarity. Although cattle do not harbor the O104:H4 pathotype, they do harbor and shed Shiga toxigenic O104 in the feces and the predominant serotype was O104:H7.  相似文献   
26.
The sub-Antarctic beetle Hydromedion sparsutum (Coleoptera, Perimylopidae) is common locally on the island of South Georgia where sub-zero temperatures can be experienced in any month of the year. Larvae were known to be weakly freeze tolerant in summer with a mean supercooling point (SCP) around -4 degrees C and a lower lethal temperature of -10 degrees C (15min exposure). This study investigated the effects of successive freezing exposures on the SCP and subsequent survival of summer acclimatised larvae. The mean SCP of field fresh larvae was -4.2+/-0.2 degrees C with a range from -1.0 to -6.1 degrees C. When larvae were cooled to -6.5 degrees C on 10 occasions at intervals of 30min and one and four days, survival was 44, 70 and 68%, respectively. The 'end of experiment' SCP of larvae surviving 10 exposures at -6.5 degrees C showed distinct changes and patterns from the original field population depending on the interval between exposure. In the 30min interval group, most larvae froze between -6 and -8 degrees C, a depression of up to 6 degrees C from the original sample; all larvae were dead when cooling was continued below the SCP to -12 degrees C. In the one and four day interval groups, most larvae froze above -6 degrees C, showing no change as a result of the 10 exposures at -6.5 degrees C. As with the 30min interval group, some larvae froze below -6 degrees C, but with a wider range, and again, all were dead when cooled to -12 degrees C. However, in the one and four day interval groups, some larvae remained unfrozen when cooled to -12 degrees C, a depression of their individual SCP of at least 6 degrees C, and were alive 24h after cooling. In a further experiment, larvae were cooled to their individual SCP temperature at daily intervals on 10 occasions to ensure that every larva froze every day. Most larvae which showed a depression of their SCP of 2-4 degrees C from their day one value became moribund or died after six or seven freezing events. Survival was highest in larvae with SCPs of -2 to -3 degrees C on day one and which froze at this level on all 10 occasions. The results indicate that in larvae in which the SCP is lowered following sub-zero exposure, the depression of the SCP is greatest in individuals that do not actually freeze. Further, the data suggest that after successive frost exposures in early winter the larval population may become segregated into two sub-populations with different overwintering strategies. One group consists of larvae that freeze consistently in the temperature range from -1 to -3 degrees C and can survive multiple freeze-thaw cycles. A second group with lower initial SCPs (around -6 degrees C), or which fall to this level or lower (down to -12 degrees C) after freezing on one or more occasions, are less likely to freeze through extended supercooling, but more likely to die if freezing occurs.  相似文献   
27.
Many fungi are known to secrete lectins, but their functional roles are not clearly understood. Sclerotium rolfsii, a soilborne plant pathogenic fungus capable of forming fruiting bodies called sclerotial bodies, secrete a cell wall-associated Thomsen-Friedenreich antigen-specific lectin. To understand the functional role of this lectin, we examined its occurrence and expression during development of the fungus. Furthermore, putative endogenous receptors of the lectin were examined to substantiate the functional role of the lectin. Immunolocalization studies using FITC-labeled lectin antibodies revealed discrete distribution of lectin sites at the branching points of the developing mycelia and uniformly occurring lectin sites on the mature sclerotial bodies. During development of the fungus the lectin is expressed in small amounts on the vegetative mycelia and reaching very high levels in mature sclerotial bodies with a sudden spurt in secretion at the maturation stage. Capping of the lectin sites on the sclerotial bodies by lectin antibodies or haptens inhibit strongly the germination of these bodies, indicating functional significance of the lectin. At the maturation stage the lectin interacts with the cell wall-associated putative endogenous receptor leading to the aggregation of mycelium to form sclerotial bodies. The lectin-receptor complex probably acts as signaling molecule in the germination process of sclerotial bodies. Using biotinylated lectin, the receptors were identified by determining the specific lectin binding to lipid components, extracted from sclerotial bodies, and separated on thin-layer chromatograms. Preliminary characterization studies indicated that the receptors are glycosphingolipids and resemble inositolphosphoceramides. These findings together demonstrate the importance of lectin-receptor interactions to explain hitherto speculated functional role of the lectins and also the glycosphingolipids of fungi.  相似文献   
28.
Cold-hardy insects overwinter by one of two main strategies: freeze tolerance and freeze avoidance by supercooling. As a general model, many freeze-tolerant species overwinter in extreme climates, freeze above -10 degrees C via induction by ice-nucleating agents, and once frozen, can survive at temperatures of up to 40 degrees C or more below the initial freezing temperature or supercooling point (SCP). It has been assumed that the SCP of freeze-tolerant insects is unaffected by the freezing process and that the freeze-tolerant state is therefore retained in winter though successive freeze-thaw cycles of the body tissues and fluids. Studies on the freeze-tolerant larva of the hoverfly Syrphus ribesii reveal this assumption to be untrue. When a sample with a mean 'first freeze' SCP of -7.6 degrees C (range of -5 degrees C to -9.5 degrees C) were cooled, either to -10 degrees C or to their individual SCP, on five occasions, the mean SCP was significantly depressed, with some larvae subsequently freezing as low as -28 degrees C. Only larvae that froze at the same consistently high temperature above -10 degrees C were alive after being frozen five times. The wider occurrence of this phenomenon would require a fundamental reassessment of the dynamics and distinctions of the freeze-tolerant and freeze-avoiding strategies of insect overwintering.  相似文献   
29.
Keratitis-ichthyosis-deafness syndrome (KID) is a rare ectodermal dysplasia characterized by vascularizing keratitis, profound sensorineural hearing loss (SNHL), and progressive erythrokeratoderma, a clinical triad that indicates a failure in development and differentiation of multiple stratifying epithelia. Here, we provide compelling evidence that KID is caused by heterozygous missense mutations in the connexin-26 gene, GJB2. In each of 10 patients with KID, we identified a point mutation leading to substitution of conserved residues in the cytoplasmic amino terminus or first extracellular domain of Cx26. One of these mutations was detected in six unrelated sporadic case subjects and also segregated in one family with vertical transmission of KID. These results indicate the presence of a common, recurrent mutation and establish its autosomal dominant nature. Cx26 and the closely related Cx30 showed differential expression in epidermal, adnexal, and corneal epithelia but were not significantly altered in lesional skin. However, mutant Cx26 was incapable of inducing intercellular coupling in vitro, which indicates its functional impairment. Our data reveal striking genotype-phenotype correlations and demonstrate that dominant GJB2 mutations can disturb the gap junction system of one or several ectodermal epithelia, thereby producing multiple phenotypes: nonsyndromic SNHL, syndromic SNHL with palmoplantar keratoderma, and KID. Decreased host defense and increased carcinogenic potential in KID illustrate that gap junction communication plays not only a crucial role in epithelial homeostasis and differentiation but also in immune response and epidermal carcinogenesis.  相似文献   
30.
Pemphigus bursarius (L.) is a host alternating root-feeding aphid with a proportion of the population overwintering as asexual hiemalis in the soil. These hiemalis must be sufficiently cold tolerant to survive at the temperatures they would experience in winter, and also be able to overcome a period of prolonged starvation brought about by the absence of secondary host plants. Cold tolerance experiments showed field collected hiemalis to be considerably more cold hardy than laboratory summer apterae, with an LTemp(50) of -13.1 degrees C compared with 2.3 degrees C. In a constant exposure at 0 degrees C some field collected hiemalis survived for 18 days, while no summer apterae survived more than 8 h. Hiemalis, collected from the field in winter and induced in the laboratory, had significantly higher levels of triglycerides, 12.8% fresh weight (39.9% dry wt.) and 11.4% fresh weight (43.7% dry wt.), respectively, compared with summer apterae with a value of 7.1% fresh weight (32.5% dry wt.). These two adaptations of increased cold tolerance and accumulation of energy reserves confirm that the hiemalis morph is adapted for overwintering and hence physiologically distinct from summer morphs, and in turn, contribute to the success of the asexual life cycle strategy in this species.  相似文献   
[首页] « 上一页 [1] [2] 3 [4] [5] [6] [7] [8] [9] [10] [11] 下一页 » 末  页»
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号