首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1986篇
  免费   250篇
  国内免费   1篇
  2018年   11篇
  2017年   20篇
  2016年   21篇
  2015年   33篇
  2014年   47篇
  2013年   68篇
  2012年   84篇
  2011年   95篇
  2010年   47篇
  2009年   48篇
  2008年   91篇
  2007年   97篇
  2006年   84篇
  2005年   58篇
  2004年   80篇
  2003年   78篇
  2002年   68篇
  2001年   84篇
  2000年   64篇
  1999年   52篇
  1998年   32篇
  1997年   31篇
  1996年   30篇
  1995年   36篇
  1994年   31篇
  1993年   34篇
  1992年   35篇
  1991年   57篇
  1990年   53篇
  1989年   40篇
  1988年   40篇
  1987年   32篇
  1986年   30篇
  1985年   38篇
  1984年   35篇
  1983年   31篇
  1982年   24篇
  1981年   25篇
  1980年   18篇
  1979年   31篇
  1978年   27篇
  1977年   21篇
  1976年   19篇
  1975年   25篇
  1974年   24篇
  1973年   19篇
  1972年   24篇
  1971年   11篇
  1969年   13篇
  1967年   11篇
排序方式: 共有2237条查询结果,搜索用时 15 毫秒
991.
The Src-family tyrosine kinases (SFKs) are oncogenic enzymes that contribute to the initiation and progression of many types of cancer. In normal cells, SFKs are kept in an inactive state mainly by phosphorylation of a consensus regulatory tyrosine near the C-terminus (Tyr530 in the SFK c-Src). As recent data indicate that tyrosine modification enhances binding of metal ions, the hypothesis that SFKs might be regulated by metal ions was investigated. The c-Src C-terminal peptide bound two Fe3 + ions with affinities at pH 4.0 of 33 and 252 μM, and phosphorylation increased the affinities at least 10-fold to 1.4 and 23 μM, as measured by absorbance spectroscopy. The corresponding phosphorylated peptide from the SFK Lyn bound two Fe3 + ions with much higher affinities (1.2 pM and 160 nM) than the Src C-terminal peptide. Furthermore, when Lyn or Hck kinases, which had been stabilised in the inactive state by phosphorylation of the C-terminal regulatory tyrosine, were incubated with Fe3 + ions, a significant enhancement of kinase activity was observed. In contrast Lyn or Hck kinases in the unphosphorylated active state were significantly inhibited by Fe3 + ions. These results suggest that Fe3 + ions can regulate SFK activity by binding to the phosphorylated C-terminal regulatory tyrosine.  相似文献   
992.
Normalization of fluorescence-based quantitative real-time PCR (qPCR) data varies across quantitative gene expression studies, despite its integral role in accurate data quantification and interpretation. Identification of suitable reference genes plays an essential role in accurate qPCR normalization, as it ensures that uncorrected gene expression data reflect normalized data. The reference residual normalization (RRN) method presented here is a modified approach to conventional 2−ΔΔCtqPCR normalization that increases mathematical transparency and incorporates statistical assessment of reference gene stability. RRN improves mathematical transparency through the use of sample-specific reference residuals (RRi) that are generated from the mean Ct of one or more reference gene(s) that are unaffected by treatment. To determine stability of putative reference genes, RRN uses ANOVA to assess the effect of treatment on expression and subsequent equivalence-threshold testing to establish the minimum permitted resolution. Step-by-step instructions and comprehensive examples that demonstrate the influence of reference gene stability on target gene normalization and interpretation are provided. Through mathematical transparency and statistical rigor, RRN promotes compliance with Minimum Information for Quantitative Experiments and, in so doing, provides increased confidence in qPCR data analysis and interpretation.  相似文献   
993.
Bacterial infections of the lungs of cystic fibrosis (CF) patients cause major complications in the treatment of this common genetic disease. Burkholderia cenocepacia infection is particularly problematic since this organism has high levels of antibiotic resistance, making it difficult to eradicate; the resulting chronic infections are associated with severe declines in lung function and increased mortality rates. B. cenocepacia strain J2315 was isolated from a CF patient and is a member of the epidemic ET12 lineage that originated in Canada or the United Kingdom and spread to Europe. The 8.06-Mb genome of this highly transmissible pathogen comprises three circular chromosomes and a plasmid and encodes a broad array of functions typical of this metabolically versatile genus, as well as numerous virulence and drug resistance functions. Although B. cenocepacia strains can be isolated from soil and can be pathogenic to both plants and man, J2315 is representative of a lineage of B. cenocepacia rarely isolated from the environment and which spreads between CF patients. Comparative analysis revealed that ca. 21% of the genome is unique in comparison to other strains of B. cenocepacia, highlighting the genomic plasticity of this species. Pseudogenes in virulence determinants suggest that the pathogenic response of J2315 may have been recently selected to promote persistence in the CF lung. The J2315 genome contains evidence that its unique and highly adapted genetic content has played a significant role in its success as an epidemic CF pathogen.  相似文献   
994.
Fibulin-4 and -5 are extracellular glycoproteins with essential non-compensatory roles in elastic fiber assembly. We have determined how they interact with tropoelastin, lysyl oxidase, and fibrillin-1, thereby revealing how they differentially regulate assembly. Strong binding between fibulin-4 and lysyl oxidase enhanced the interaction of fibulin-4 with tropoelastin, forming ternary complexes that may direct elastin cross-linking. In contrast, fibulin-5 did not bind lysyl oxidase strongly but bound tropoelastin in terminal and central regions and could concurrently bind fibulin-4. Both fibulins differentially bound N-terminal fibrillin-1, which strongly inhibited their binding to lysyl oxidase and tropoelastin. Knockdown experiments revealed that fibulin-5 controlled elastin deposition on microfibrils, although fibulin-4 can also bind fibrillin-1. These experiments provide a molecular account of the distinct roles of fibulin-4 and -5 in elastic fiber assembly and how they act in concert to chaperone cross-linked elastin onto microfibrils.Fibulins are a family of extracellular glycoproteins containing contiguous calcium-binding epidermal growth factor-like domains (cbEGFs)3 and a characteristic C-terminal fibulin (FC) domain (13). Recent studies have revealed that fibulin-4 and -5 are both essential for elastic fiber formation (47). Fibulin-4 is widely expressed from early embryogenesis and is necessary for normal vascular, lung, and skin development, since mice that lack fibulin-4 do not form elastic fibers and die perinatally (5). Furthermore, mice with reduced fibulin-4 expression develop aneurysms (8). Fibulin-5 is abundant in the aorta and large arteries during embryogenesis and following vascular injury (9, 10). Lack of fibulin-5 causes a less severe phenotype, with viable homozygous mice, but the elastic fibers in skin, lungs, and aorta are irregular and fragmented (6, 7), and there is altered vascular remodeling (11). These mice models also highlight that fibulin-4 and -5 have non-compensatory roles in elastic fiber formation. Mutations in both molecules can cause cutis laxa, a heritable disorder associated with elastic fiber degeneration leading to sagging skin, vascular tortuosity, and emphysematous lungs (1215). A third isoform, fibulin-3, may play a minor role in elastic fiber formation, since its deficiency disrupts elastic fibers in Bruch''s membrane of the eye (16) and vaginal tissues (17).Elastic fiber formation is a complex multistep process (1820). Initial pericellular microassembly of tropoelastin, which may involve the 67-kDa elastin-binding protein receptor, generates elastin globules that are stabilized by desmosine cross-links catalyzed mainly by lysyl oxidase (LOX) but also by LOXL1 (LOX-like 1). These globules are deposited on a fibrillin microfibril template, where they coalesce and undergo further cross-linking to form the elastin core of mature fibers. The ability of fibulin-4 and -5 to bind tropoelastin and fibrillin-1, the major structural component of microfibrils, supports a model in which these fibulins direct elastin deposition on microfibrils (47, 2125). This model does not delineate the unique molecular contributions of fibulin-4 and -5 to elastic fiber formation, but some molecular differences have emerged. Tropoelastin was bound more strongly by fibulin-5 than by fibulin-4, whereas fibulin-5 was at the microfibril-elastin interface, but perichondrial fibulin-4 localized mainly to microfibrils (4).Fibulin-4 null mice offer tantalizing clues to how fibulin-4 contributes to elastic fiber formation (5). They had dramatically reduced (94%) desmosine cross-links despite no change in elastin or LOX expression levels, and electron-dense rodlike structures were prominent within elastin aggregates. Morphologically similar structures seen after chemically inhibiting LOX were previously identified as glycosaminoglycans, which can bind charged free ϵ-amino groups on lysines in tropoelastin (26). However, fibulin-4+/− mice showed ∼20% increase in desmosine (5). LOX-null mice have phenotypic features similar to those of fibulin-4 null mice, dying perinatally with 60% reduced desmosine cross-links and major abnormalities in vascular and other elastic tissues (27, 28). In contrast, LOXL1-null mice are viable but have reduced desmosine (29), whereas fibulin-5 null mice have a 16% reduction in desmosine cross-links and survive well into adulthood (7). Detection of the LOXL1 pro-domain in fibulin-5 null mice skin but not wild-type skin implicates fibulin-5 in activation of LOXL1 (30).We and others have shown that fibrillin-1 and the microfibrillar protein MAGP-1 can both directly bind tropoelastin (3134). However, the fibulin-null mice show that the fibrillin-1 interaction with tropoelastin is insufficient to support elastic fiber formation in vivo. Fibulin-5 has been reported to facilitate tropoelastin binding to the N-terminal half of fibrillin-1 (21). A study of elastin polypeptide self-assembly through coacervation and maturation phases showed that, although the N-terminal half of fibrillin-1 increased maturation velocity and droplet clustering, fibulin-4 and -5 both slowed maturation and limited globule growth (35). These studies imply that fibulins and fibrillin-1 act together to regulate elastin accretion on microfibrils.To gain further insights into the contributions of fibulin-4 and -5 to elastic fiber formation, we have delineated how they interact with tropoelastin, LOX, and fibrillin-1. Novel findings are that fibulin-4 directly binds LOX, and this interaction enhances fibulin-4 binding to tropoelastin, thus forming a ternary complex that may be critical for elastin cross-linking. Fibulin-5 can concurrently bind fibulin-4 and tropoelastin, but the interaction of both fibulins with fibrillin-1 strongly inhibits their binding to tropoelastin. These interactions indicate the molecular basis of how fibulins act as chaperones for deposition of elastin onto microfibrils. Our study thus provides a molecular account of the differential roles of fibulins-4 and -5 in elastic fiber formation.  相似文献   
995.
Salicylic acid (SA), jasmonic acid (JA), ethylene (ET), and their interactions mediate plant responses to pathogen and herbivore attack. JA-SA and JA-ET cross-signaling are well studied, but little is known about SA-ET cross-signaling in plant-herbivore interactions. When the specialist herbivore tobacco hornworm (Manduca sexta) attacks Nicotiana attenuata, rapid and transient JA and ET bursts are elicited without significantly altering wound-induced SA levels. In contrast, attack from the generalist beet armyworm (Spodoptera exigua) results in comparatively lower JA and ET bursts, but amplified SA bursts. These phytohormone responses are mimicked when the species' larval oral secretions (OSSe and OSMs) are added to puncture wounds. Fatty acid-amino acid conjugates elicit the JA and ET bursts, but not the SA burst. OSSe had enhanced glucose oxidase activity (but not β-glucosidase activity), which was sufficient to elicit the SA burst and attenuate the JA and ET levels. It is known that SA antagonizes JA; glucose oxidase activity and associated hydrogen peroxide also antagonizes the ET burst. We examined the OSMs-elicited SA burst in plants impaired in their ability to elicit JA (antisense [as]-lox3) and ET (inverted repeat [ir]-aco) bursts and perceive ET (35s-etr1b) after fatty acid-amino acid conjugate elicitation, which revealed that both ET and JA bursts antagonize the SA burst. Treating wild-type plants with ethephone and 1-methylcyclopropane confirmed these results and demonstrated the central role of the ET burst in suppressing the OSMs-elicited SA burst. By suppressing the SA burst, the ET burst likely facilitates unfettered JA-mediated defense activation in response to herbivores that otherwise would elicit SA.  相似文献   
996.
COMATOSE (CTS), the Arabidopsis homologue of human Adrenoleukodystrophy protein (ALDP), is required for import of substrates for peroxisomal β-oxidation. A new allelic series and a homology model based on the bacterial ABC transporter, Sav1866, provide novel insights into structure-function relations of ABC subfamily D proteins. In contrast to ALDP, where the majority of mutations result in protein absence from the peroxisomal membrane, all CTS mutants produced stable protein. Mutation of conserved residues in the Walker A and B motifs in CTS nucleotide-binding domain (NBD) 1 resulted in a null phenotype but had little effect in NBD2, indicating that the NBDs are functionally distinct in vivo. Two alleles containing mutations in NBD1 outside the Walker motifs (E617K and C631Y) exhibited resistance to auxin precursors 2,4-dichlorophenoxybutyric acid (2,4-DB) and indole butyric acid (IBA) but were wild type in all other tests. The homology model predicted that the transmission interfaces are domain-swapped in CTS, and the differential effects of mutations in the conserved “EAA motif” of coupling helix 2 supported this prediction, consistent with distinct roles for each NBD. Our findings demonstrate that CTS functions can be separated by mutagenesis and the structural model provides a framework for interpretation of phenotypic data.  相似文献   
997.
Safe, effective adjuvants that enhance vaccine potency, including induction of neutralizing Abs against a broad range of variant strains, is an important strategy for the development of seasonal influenza vaccines which can provide optimal protection, even during seasons when available vaccines are not well matched to circulating viruses. We investigated the safety and ability of Glucopyranosyl Lipid Adjuvant-Stable Emulsion (GLA-SE), a synthetic Toll-like receptor (TLR)4 agonist formulation, to adjuvant Fluzone® in mice and non-human primates. The GLA-SE adjuvanted Fluzone vaccine caused no adverse reactions, increased the induction of T helper type 1 (TH1)-biased cytokines such as IFNγ, TNF and IL-2, and broadened serological responses against drifted A/H1N1 and A/H3N2 influenza variants. These results suggest that synthetic TLR4 adjuvants can enhance the magnitude and quality of protective immunity induced by influenza vaccines.  相似文献   
998.

Background  

The scavenger receptor cysteine rich (SRCR) domain is an ancient and conserved protein domain. CD163 and WC1 molecules are classed together as group B SRCR superfamily members, along with Spα, CD5 and CD6, all of which are expressed by immune system cells. There are three known types of CD163 molecules in mammals, CD163A (M130, coded for by CD163), CD163b (M160, coded for by CD163L1) and CD163c-α (CD163L1 or SCART), while their nearest relative, WC1, is encoded by a multigene family so far identified in the artiodactyl species of cattle, sheep, and pigs.  相似文献   
999.
Gastrin-releasing peptide and cancer   总被引:11,自引:0,他引:11  
Over the past 20 years, abundant evidence has been collected to suggest that gastrin-releasing peptide (GRP) and its receptors play an important role in the development of a variety of cancers. In fact, the detection of GRP and the GRP receptor in small cell lung carcinoma (SCLC), and the demonstration that anti-GRP antibodies inhibited proliferation in SCLC cell lines, established GRP as the prototypical autocrine growth factor. All forms of GRP are generated by processing of a 125-amino acid prohormone; recent studies indicate that C-terminal amidation of GRP18-27 is not essential for bioactivity, and that peptides derived from residues 31 to 125 of the prohormone are present in normal tissue and in tumors. GRP receptors can be divided into four classes, all of which belong to the 7 transmembrane domain family and bind GRP and/or GRP analogues with affinities in the nM range. Over-expression of GRP and its receptors has been demonstrated at both the mRNA and protein level in many types of tumors including lung, prostate, breast, stomach, pancreas and colon. GRP has also been shown to act as a potent mitogen for cancer cells of diverse origin both in vitro and in animal models of carcinogenesis. Other actions of GRP relevant to carcinogenesis include effects on morphogenesis, angiogenesis, cell migration and cell adhesion. Future prospects for the use of radiolabelled and cytotoxic GRP analogues and antagonists for cancer diagnosis and therapy appear promising.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号