首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1927篇
  免费   244篇
  2021年   13篇
  2017年   18篇
  2016年   21篇
  2015年   33篇
  2014年   47篇
  2013年   70篇
  2012年   83篇
  2011年   94篇
  2010年   49篇
  2009年   45篇
  2008年   89篇
  2007年   91篇
  2006年   81篇
  2005年   55篇
  2004年   75篇
  2003年   75篇
  2002年   67篇
  2001年   81篇
  2000年   63篇
  1999年   49篇
  1998年   32篇
  1997年   28篇
  1996年   26篇
  1995年   31篇
  1994年   31篇
  1993年   31篇
  1992年   35篇
  1991年   57篇
  1990年   52篇
  1989年   39篇
  1988年   40篇
  1987年   31篇
  1986年   28篇
  1985年   36篇
  1984年   35篇
  1983年   31篇
  1982年   24篇
  1981年   25篇
  1980年   18篇
  1979年   31篇
  1978年   26篇
  1977年   18篇
  1976年   18篇
  1975年   24篇
  1974年   24篇
  1973年   19篇
  1972年   24篇
  1971年   11篇
  1969年   13篇
  1967年   11篇
排序方式: 共有2171条查询结果,搜索用时 98 毫秒
991.
Directional cell movement is universally required for tissue morphogenesis. Although it is known that cell/matrix interactions are essential for directional movement in heart development, the mechanisms governing these interactions require elucidation. Here we demonstrate that a novel protein/protein interaction between blood vessel epicardial substance (Bves) and N-myc downstream regulated gene 4 (NDRG4) is critical for regulation of epicardial cell directional movement, as disruption of this interaction randomizes migratory patterns. Our studies show that Bves/NDRG4 interaction is required for trafficking of internalized fibronectin through the “autocrine extracellular matrix (ECM) deposition” fibronectin recycling pathway. Of importance, we demonstrate that Bves/NDRG4-mediated fibronectin recycling is indeed essential for epicardial cell directional movement, thus linking these two cell processes. Finally, total internal reflectance fluorescence microscopy shows that Bves/NDRG4 interaction is required for fusion of recycling endosomes with the basal cell surface, providing a molecular mechanism of motility substrate delivery that regulates cell directional movement. This is the first evidence of a molecular function for Bves and NDRG4 proteins within broader subcellular trafficking paradigms. These data identify novel regulators of a critical vesicle-docking step required for autocrine ECM deposition and explain how Bves facilitates cell-microenvironment interactions in the regulation of epicardial cell–directed movement.  相似文献   
992.
The self-assembly of proteins and peptides into polymeric amyloid fibrils is a process that has important implications ranging from the understanding of protein misfolding disorders to the discovery of novel nanobiomaterials. In this study, we probe the stability of fibrils prepared at pH 2.0 and composed of the protein insulin by manipulating electrostatic interactions within the fibril architecture. We demonstrate that strong electrostatic repulsion is sufficient to disrupt the hydrogen-bonded, cross-β network that links insulin molecules and ultimately results in fibril dissociation. The extent of this dissociation correlates well with predictions for colloidal models considering the net global charge of the polypeptide chain, although the kinetics of the process is regulated by the charge state of a single amino acid. We found the fibrils to be maximally stable under their formation conditions. Partial disruption of the cross-β network under conditions where the fibrils remain intact leads to a reduction in their stability. Together, these results support the contention that a major determinant of amyloid stability stems from the interactions in the structured core, and show how the control of electrostatic interactions can be used to characterize the factors that modulate fibril stability.  相似文献   
993.
To create a metabolic sink in the jasmonic acid (JA) pathway, we generated transgenic Nicotiana attenuata lines ectopically expressing Arabidopsis (Arabidopsis thaliana) jasmonic acid O-methyltransferase (35S-jmt) and additionally silenced in other lines the N. attenuata methyl jasmonate esterase (35S-jmt/ir-mje) to reduce the deesterification of methyl jasmonate (MeJA). Basal jasmonate levels did not differ between transgenic and wild-type plants; however, after wounding and elicitation with Manduca sexta oral secretions, the bursts of JA, jasmonoyl-isoleucine (JA-Ile), and their metabolites that are normally observed in the lamina, midvein, and petiole of elicited wild-type leaves were largely absent in both transformants but replaced by a burst of endogenous MeJA that accounted for almost half of the total elicited jasmonate pools. In these plants, MeJA became a metabolic sink that affected the jasmonate metabolic network and its spread to systemic leaves, with major effects on 12-oxo-phytodieonic acid, JA, and hydroxy-JA in petioles and on JA-Ile in laminas. Alterations in the size of jasmonate pools were most obvious in systemic tissues, especially petioles. Expression of threonine deaminase and trypsin proteinase inhibitor, two JA-inducible defense genes, was strongly decreased in both transgenic lines without influencing the expression of JA biosynthesis genes that were uncoupled from the wounding and elicitation with M. sexta oral secretions-elicited JA-Ile gradient in elicited leaves. Taken together, this study provides support for a central role of the vasculature in the propagation of jasmonates and new insights into the versatile spatiotemporal characteristics of the jasmonate metabolic network.  相似文献   
994.
Contact hypersensitivity is a CD8 T cell-mediated response to hapten sensitization and challenge of the skin. Effector CD8 T cell recruitment into the skin parenchyma to elicit the response to hapten challenge requires prior CXCL1/KC-directed neutrophil infiltration within 3-6 h after challenge and is dependent on IFN-γ and IL-17 produced by the hapten-primed CD8 T cells. Mechanisms directing hapten-primed CD8 T cell localization and activation in the Ag challenge site to induce this early CXCL1 production in response to 2,4-dinitrofluorobenzene were investigated. Both TNF-α and IL-17, but not IFN-γ, mRNA was detectable within 1 h of hapten challenge of sensitized mice and increased thereafter. Expression of ICAM-1 was observed by 1 h after challenge of sensitized and nonsensitized mice and was dependent on TNF-α. The induction of IL-17, IFN-γ, and CXCL1 in the challenge site was not observed when ICAM-1 was absent or neutralized by specific Ab. During the elicitation of the contact hypersensitivity response, endothelial cells expressed ICAM-1 and produced CXCL1 suggesting this as the site of CD8 T cell localization and activation. Endothelial cells isolated from challenged skin of naive and sensitized mice had acquired the hapten and the ability to activate hapten-primed CD8 T cell cytokine production. These results indicate that hapten application to the skin of sensitized animals initiates an inflammatory response promoting hapten-primed CD8 T cell localization to the challenge site through TNF-α-induced ICAM-1 expression and CD8 T cell activation to produce IFN-γ and IL-17 through endothelial cell presentation of hapten.  相似文献   
995.
996.
997.
SAR studies of pyrrolo[1,2-f]triazines as JAK2 inhibitors is presented. Achieving JAK2 inhibition selectively over JAK3 is discussed.  相似文献   
998.
We designed and synthesized a small series of 2-aryl-imidazo[2,1-b]benzothiazole, representing a combination of motifs from the two most potent amyloid imaging agents, PIB and IMPY. The binding affinity of the new compounds ranged from 6 to 133 nM. Among the best compounds, 3b (Ki = 6 nM) can be labeled with 11CH3 for PET imaging whereas 3j (Ki = 10.9 nM) can be labeled with 123I for SPECT imaging.  相似文献   
999.
PepT1 and PepT2 are major facilitator superfamily (MFS) transporters that utilize a proton gradient to drive the uptake of di‐ and tri‐peptides in the small intestine and kidney, respectively. They are the major routes by which we absorb dietary nitrogen and many orally administered drugs. Here, we present the crystal structure of PepTSo, a functionally similar prokaryotic homologue of the mammalian peptide transporters from Shewanella oneidensis. This structure, refined using data up to 3.6 Å resolution, reveals a ligand‐bound occluded state for the MFS and provides new insights into a general transport mechanism. We have located the peptide‐binding site in a central hydrophilic cavity, which occludes a bound ligand from both sides of the membrane. Residues thought to be involved in proton coupling have also been identified near the extracellular gate of the cavity. Based on these findings and associated kinetic data, we propose that PepTSo represents a sound model system for understanding mammalian peptide transport as catalysed by PepT1 and PepT2.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号