首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   120篇
  免费   8篇
  2022年   2篇
  2021年   4篇
  2019年   2篇
  2017年   1篇
  2016年   4篇
  2015年   6篇
  2014年   7篇
  2013年   8篇
  2012年   5篇
  2011年   6篇
  2010年   7篇
  2009年   1篇
  2008年   8篇
  2007年   7篇
  2006年   3篇
  2005年   7篇
  2004年   4篇
  2003年   1篇
  2002年   3篇
  2001年   2篇
  2000年   3篇
  1999年   2篇
  1998年   5篇
  1997年   3篇
  1995年   3篇
  1994年   2篇
  1993年   1篇
  1992年   3篇
  1991年   1篇
  1990年   1篇
  1989年   3篇
  1988年   1篇
  1987年   1篇
  1986年   1篇
  1985年   3篇
  1983年   1篇
  1982年   1篇
  1977年   1篇
  1976年   2篇
  1970年   1篇
  1953年   1篇
排序方式: 共有128条查询结果,搜索用时 31 毫秒
21.
We investigated the efficacy of Ocimum basilicum (OB) essential oils for treating depression related behavioral, biochemical and histopathological changes caused by exposure to chronic unpredictable mild stress (CUMS) in mice and to explore the mechanism underlying the pathology. Male albino mice were divided into four groups: controls; CUMS; CUMS plus fluoxetine, the antidepressant administered for pharmacological validation of OB; and CUMS plus OB. Behavioral tests included the forced swim test (FST), elevated plus-maze (EPM) and the open ?eld test (OFT); these tests were performed at the end of the experiment. We assessed serum corticosterone level, protein, gene and immunoexpression of brain-derived neurotropic factor (BDNF) and glucocorticoid receptors (GRs) as well as immunoexpression of glial fibrillary acidic protein (GFAP), Ki67, caspase-3 in the hippocampus. CUMS caused depression in the mice as evidenced by prolonged immobility in the FST, prolonged time spent in the open arms during the EPM test and reduction of open field activity in the OFT. OB ameliorated the CUMS induced depressive status. OB significantly reduced the corticosterone level and up-regulated protein and gene expressions of BDNF and GR. OB reduced CUMS induced hippocampal neuron atrophy and apoptosis, and increased the number of the astrocytes and new nerve cells. OB significantly increased GFAP-positive cells as well as BDNF and GR immunoexpression in the hippocampus.  相似文献   
22.
23.
24.
25.
26.
27.
For almost 15 years, our Pathway model has been the most powerful model in terms of predicting the tunnelling mechanism for electron transfer (ET) in biological systems, particularly proteins. Going beyond the conventional Pathway models, we have generalized our method to understand how protein dynamics modulate not only the Franck-Condon factor, but also the tunnelling matrix element. We have demonstrated that when interference among pathways modulates the electron tunnelling interactions in proteins (particularly destructive interference), dynamical effects are of critical importance. Tunnelling can be controlled by protein conformations that lie far from equilibrium-those that minimize the effect of destructive interference during tunnelling, for example. In the opposite regime, electron tunnelling is mediated by one (or a few) constructively interfering pathway tubes and dynamical effects are modest. This new mechanism for dynamical modulation of the ET rate has been able to explain and/or predict several rates that were later confirmed by experiment. However, thermal fluctuations can also affect these molecular machines in many other ways. For example, we show how global transformations, which control protein functions such as allostery, may involve large-scale motion and possibly partial unfolding during the reaction event.  相似文献   
28.
Some pesticides may interfere with the female hormonal function, which may lead to negative effects on the reproductive system through disruption of the hormonal balance necessary for proper functioning. Previous studies primarily focused on interference with the estrogen and/or androgen receptor, but the hormonal function may be disrupted in many more ways through pesticide exposure. The aim of this review is to give an overview of the various ways in which pesticides may disrupt the hormonal function of the female reproductive system and in particular the ovarian cycle. Disruption can occur in all stages of hormonal regulation: 1. hormone synthesis; 2. hormone release and storage; 3. hormone transport and clearance; 4. hormone receptor recognition and binding; 5. hormone postreceptor activation; 6. the thyroid function; and 7. the central nervous system. These mechanisms are described for effects of pesticide exposure in vitro and on experimental animals in vivo. For the latter, potential effects of endocrine disrupting pesticides on the female reproductive system, i.e. modulation of hormone concentrations, ovarian cycle irregularities, and impaired fertility, are also reviewed. In epidemiological studies, exposure to pesticides has been associated with menstrual cycle disturbances, reduced fertility, prolonged time-to-pregnancy, spontaneous abortion, stillbirths, and developmental defects, which may or may not be due to disruption of the female hormonal function. Because pesticides comprise a large number of distinct substances with dissimilar structures and diverse toxicity, it is most likely that several of the above-mentioned mechanisms are involved in the pathophysiological pathways explaining the role of pesticide exposure in ovarian cycle disturbances, ultimately leading to fertility problems and other reproductive effects. In future research, information on the ways in which pesticides may disrupt the hormonal function as described in this review, can be used to generate specific hypotheses for studies on the effects of pesticides on the ovarian cycle, both in toxicological and epidemiological settings.  相似文献   
29.
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号