首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   994篇
  免费   76篇
  1070篇
  2022年   10篇
  2021年   21篇
  2020年   15篇
  2019年   18篇
  2018年   20篇
  2017年   8篇
  2016年   22篇
  2015年   37篇
  2014年   34篇
  2013年   65篇
  2012年   74篇
  2011年   60篇
  2010年   33篇
  2009年   37篇
  2008年   47篇
  2007年   54篇
  2006年   35篇
  2005年   32篇
  2004年   37篇
  2003年   41篇
  2002年   38篇
  2001年   17篇
  2000年   22篇
  1999年   24篇
  1998年   10篇
  1997年   12篇
  1996年   10篇
  1992年   11篇
  1991年   12篇
  1990年   8篇
  1989年   18篇
  1988年   10篇
  1987年   6篇
  1986年   7篇
  1985年   9篇
  1984年   9篇
  1983年   12篇
  1982年   11篇
  1981年   10篇
  1980年   8篇
  1979年   19篇
  1978年   7篇
  1977年   5篇
  1976年   8篇
  1975年   5篇
  1974年   6篇
  1973年   12篇
  1972年   5篇
  1971年   6篇
  1970年   5篇
排序方式: 共有1070条查询结果,搜索用时 0 毫秒
131.
132.
Understanding the biophysical processes that govern freezing injury of a tissue equivalent (TE) is an important step in characterizing and improving the cryopreservation of these systems. TEs were formed by entrapping human dermal fibroblasts (HDFs) in collagen or in fibrin gels. Freezing studies were conducted using a Linkam cryostage fitted to an optical microscope allowing observation of the TEs cooled under controlled rates between 5 and 130 degrees C/min. Typically, freezing of cellular systems results in two biophysical processes that are both dependent on the cooling rate: dehydration and/or intracellular ice formation (IIF). Both these processes can potentially be destructive to cells. In this study, the biophysics of freezing cells in collagen and fibrin TEs have been quantified and compared to freezing cells in suspension. Experimental data were fitted in numerical models to extract parameters that governed water permeability, E(Lp) and L(pg), and intracellular ice nucleation, omega(o) and kappa(o). Results indicate that major differences exist between freezing HDFs in suspension and in a tissue equivalent. During freezing, 55% of the HDFs in suspension formed IIF as compared to 100% of HDFs forming IIF in collagen and fibrin TE at a cooling rate of 130 degrees C/min. Also, both the water permeability and the IIF parameters were determined to be higher for HDFs in TEs as compared to cell suspensions. Between the TEs, HDFs in fibrin TE exhibited higher values for the biophysical parameters as compared to HDFs in collagen TE. The observed biophysics seems to indicate that cell-cell and cell-matrix interactions play a major role in ice propagation in TEs.  相似文献   
133.
Estradiol plays a vital role in the growth and development of mammary glands. It is a potent stimulator of metabolic processes in normal and carcinoma breast. A critical factor in determining mammary glandular morphology is the stroma. Collagen is a predominant component of the extracellular matrix and cell-collagen interactions are essential carcinogenesis. The present investigation explored the influence of estradiol on collagen solubility and metabolism in mammary tumors during tumor progression and regression. A single injection of 20 mg of 9,10-dimethyl-1,2-benzanthracene was given to rats at 7 weeks of age. With the appearance of the first palpable mammary tumor, the rats were treated with 0.5 microg estradiol or 50 microg tamoxifen daily for 30 days. The rats were sacrificed 24 h after 30 days of treatment. Estradiol appears to stimulate the synthesis of new collagens and thus contributes to the enlargement of the mammary tumors. This might have created a potential microenvironment by increasing the synthesis of suitable matrix that sustains the growth of the mammary tumors. In short, the present findings emphasize a definite mediatory role for collagen in estradiol promoted mammary tumor growth.  相似文献   
134.
Facile synthesis of natural α-noscapine analogue, 9-amino-α-noscapine, a potent inhibitor of tubulin polymerization for cancer therapy, is achieved via copper(I) iodide mediated in situ aromatic azidation and reduction of 9-bromo-α-noscapine (obtained by bromination of natural α-noscapine) with NaN(3) in DMSO at 130°C in the presence of L-proline as an amino acid promoter. The protocol developed here avoided isolation of 9-azido-α-noscapine and did not cleave the sensitive C-C bond between two heterocyclic phthalide and isoquinoline units.  相似文献   
135.
Extensive environment-dependent rearrangement of the helix-turn-helix DNA recognition region and adjacent L-tryptophan binding pocket is reported in the crystal structure of dimeric E. coli trp aporepressor with point mutation Leu75Phe. In one of two subunits, the eight residues immediately C-terminal to the mutation are shifted forward in helical register by three positions, and the five following residues form an extrahelical loop accommodating the register shift. In contrast, the second subunit has wildtype-like conformation, as do both subunits in an isomorphous wildtype control structure. Treated together as an ensemble pair, the distorted and wildtype-like conformations of the mutant apoprotein agree more fully than either conformation alone with previously reported NOE measurements, and account more completely for its diverse biochemical and biophysical properties. The register-shifted segment Ile79-Ala80-Thr81-Ile82-Thr83 is helical in both conformations despite low helical propensity, suggesting an important structural role for the steric constraints imposed by β-branched residues in helical conformation.  相似文献   
136.
137.
138.
The use of ordered, high-aspect ratio nanopillar arrays on the surface of silicon-based chips to enhance signal intensity in DNA microarrays is reported. These nanopillars consisting either of a single silicon dioxide substrate or a dual silicon/silicon dioxide substrate are fabricated using deep-UV lithography followed by reactive ion etching. These pillar type arrays provide a three-dimensional high surface-density platform that increases the immobilization capacity of captured probes, enhances target accessibility and reduces background noise interference in DNA microarrays, leading to improved signal-to-noise ratios, sensitivity and specificity. Consequently, it was found that the use of such nanopillars enhanced the hybridization signals by up to seven times as compared to silicon dioxide thin film substrates. In addition, hybridization of synthetic targets to capture probes that contained a single-base variation showed that the perfect matched duplex signals on dual-substrate nanopillars can be up to 23 times higher than the mismatched duplex signals, allowing the targets to be unambiguously identified. These results suggest that the nanopillars, particularly the dual-substrate pillars, are able to enhance the hybridization signals and discrimination power in nucleic acids-based detection, providing an alternative platform for improving the performance of DNA microarrays.  相似文献   
139.
Impedance of renal vascular smooth muscle cells (VSMCs) cultured on microelectrodes was measured by electric cell-substrate impedance sensing. Changes in measured impedance as a function of frequency were compared with the calculated values obtained from an extended cell-electrode model to estimate the junctional resistance, distance between the ventral cell surface and the substratum, and apical and basolateral membrane capacitances of renal VSMCs. This cell-electrode model was derived to accommodate the slender and rectangular shape of VSMCs. The calculated changes in impedance (Zcal) based on the model agreed well with the experimental measurement (Zexp), and the percentage error defined as |(ZcalZexp)/Zexp| was 1.0%. To test the sensitivity of the new model for capturing changes in cell-cell and cell-substrate interactions induced by changes in cellular environment, we then applied this model to analyze timpedance changes induced by an integrin binding peptide in renal VSMCs. Our result demonstrates that integrin binding peptide decreases junctional resistance between cells, increases the distance between the basolateral cell surface and substratum, and increases the apical membrane capacitance, whereas the basolateral membrane capacitance stays relatively stable. This model provides a generic approach for impedance analysis of cell layers composed of slender, rectangular cells. electric cell-substrate impedance sensing; cell attachment; cell adhesion; extracellular matrix; integrin  相似文献   
140.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号