首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1594篇
  免费   141篇
  国内免费   1篇
  1736篇
  2024年   2篇
  2023年   2篇
  2022年   31篇
  2021年   51篇
  2020年   19篇
  2019年   31篇
  2018年   46篇
  2017年   36篇
  2016年   61篇
  2015年   99篇
  2014年   101篇
  2013年   101篇
  2012年   118篇
  2011年   121篇
  2010年   73篇
  2009年   81篇
  2008年   99篇
  2007年   98篇
  2006年   89篇
  2005年   86篇
  2004年   89篇
  2003年   80篇
  2002年   69篇
  2001年   8篇
  2000年   12篇
  1999年   20篇
  1998年   14篇
  1997年   2篇
  1996年   10篇
  1995年   8篇
  1994年   10篇
  1993年   4篇
  1992年   3篇
  1991年   4篇
  1990年   4篇
  1989年   3篇
  1988年   3篇
  1987年   2篇
  1986年   5篇
  1985年   4篇
  1982年   3篇
  1980年   2篇
  1978年   2篇
  1977年   2篇
  1976年   2篇
  1975年   2篇
  1973年   2篇
  1972年   2篇
  1942年   3篇
  1915年   1篇
排序方式: 共有1736条查询结果,搜索用时 15 毫秒
81.
Mosquito-borne flaviviruses are among the most significant arboviral pathogens worldwide. Vaccinations and mosquito population control programs remain the most reliable means for flavivirus disease prevention, and live attenuated viruses remain one of the most attractive flavivirus vaccine platforms. Some live attenuated viruses are capable of infecting principle mosquito vectors, as demonstrated in the laboratory, which in combination with their intrinsic genetic instability could potentially lead to a vaccine virus reversion back to wild-type in nature, followed by introduction and dissemination of potentially dangerous viral strains into new geographic locations. To mitigate this risk we developed a microRNA-targeting approach that selectively restricts replication of flavivirus in the mosquito host. Introduction of sequences complementary to a mosquito-specific mir-184 and mir-275 miRNAs individually or in combination into the 3’NCR and/or ORF region resulted in selective restriction of dengue type 4 virus (DEN4) replication in mosquito cell lines and adult Aedes mosquitos. Moreover a combined targeting of DEN4 genome with mosquito-specific and vertebrate CNS-specific mir-124 miRNA can silence viral replication in two evolutionally distant biological systems: mosquitoes and mouse brains. Thus, this approach can reinforce the safety of newly developed or existing vaccines for use in humans and could provide an additional level of biosafety for laboratories using viruses with altered pathogenic or transmissibility characteristics.  相似文献   
82.
Genome-wide association studies (GWAS) are widely applied to analyze the genetic effects on phenotypes. With the availability of high-throughput technologies for metabolite measurements, GWAS successfully identified loci that affect metabolite concentrations and underlying pathways. In most GWAS, the effect of each SNP on the phenotype is assumed to be additive. Other genetic models such as recessive, dominant, or overdominant were considered only by very few studies. In contrast to this, there are theories that emphasize the relevance of nonadditive effects as a consequence of physiologic mechanisms. This might be especially important for metabolites because these intermediate phenotypes are closer to the underlying pathways than other traits or diseases. In this study we analyzed systematically nonadditive effects on a large panel of serum metabolites and all possible ratios (22,801 total) in a population-based study [Cooperative Health Research in the Region of Augsburg (KORA) F4, N = 1,785]. We applied four different 1-degree-of-freedom (1-df) tests corresponding to an additive, dominant, recessive, and overdominant trait model as well as a genotypic model with two degree-of-freedom (2-df) that allows a more general consideration of genetic effects. Twenty-three loci were found to be genome-wide significantly associated (Bonferroni corrected P ≤ 2.19 × 10−12) with at least one metabolite or ratio. For five of them, we show the evidence of nonadditive effects. We replicated 17 loci, including 3 loci with nonadditive effects, in an independent study (TwinsUK, N = 846). In conclusion, we found that most genetic effects on metabolite concentrations and ratios were indeed additive, which verifies the practice of using the additive model for analyzing SNP effects on metabolites.  相似文献   
83.

Introduction

The chemical sensitivity of urine metabolomics analysis is greatly compromised due to the large amounts of inorganic salts in urine (NaCl, KCl), which are detrimental to analytical instrumentation, e.g. chromatographic columns or mass spectrometers. Traditional desalting approaches applied to urine pretreatment suffer from the chemical losses, which reduce the information depth of analysis.

Objectives

We aimed to test a simple approach for the simultaneous preconcentration and desalting of organic solutes in urine based on the collection of induced bursting bubble aerosols above the surface of urine samples.

Method

Bursting bubbles were generated at ambient conditions by feeding gas through an air diffuser at the bottom of diluted (200 times in ultrapure water) urine solution (50–500 mL). Collected aerosols were analyzed by the direct-infusion electrospray ionization mass spectrometry (ESI–MS).

Results

The simultaneous preconcentration (ca. 6–12 fold) and desalting (ca. six–tenfold) of organic solutes in urine was achieved by the bursting bubble sample pretreatment, which allowed ca. three-times higher number of identified urine metabolites by high-resolution MS analysis. No chemical losses due to bubbling were observed. The increased degree of MS data clustering was demonstrated on the principal component analysis of data sets from the urine of healthy people and from the urine people with renal insufficiency. At least ten times higher sensitivity of trace drug detection in urine was demonstrated for clenbuterol and salbutamol.

Conclusion

Our results indicate the high versatility of bubble bursting as a simple pretreatment approach to enhance the chemical depth and sensitivity of urine analysis. The approach could be attractive for personalized medicine as well as for the diagnostics of renal disorders of different etiology (diabetic nephropathy, chronic renal failure, transplant-associated complications, oncological disorders).

Graphical Abstract

Urine desalting and preconcentration in bursting bubbles.
  相似文献   
84.
85.
Humans share about 99% of their genomic DNA with chimpanzees and bonobos; thus, the differences between these species are unlikely to be in gene content but could be caused by inherited changes in regulatory systems. Endogenous retroviruses (ERVs) comprise approximately 5% of the human genome. The LTRs of ERVs contain many regulatory sequences, such as promoters, enhancers, polyadenylation signals and factor-binding sites. Thus, they can influence the expression of nearby human genes. All known human-specific LTRs belong to the HERV-K (human ERV) family, the most active family in the human genome. It is likely that some of these ERVs could have integrated into regulatory regions of the human genome, and therefore could have had an impact on the expression of adjacent genes, which have consequently contributed to human evolution. This review discusses possible functional consequences of ERV integration in active coding regions.  相似文献   
86.
Adenoviruses (Ads) are promising vectors for therapeutic interventions in humans. When injected into the bloodstream, Ad vectors can bind several vitamin K-dependent blood coagulation factors, which contributes to virus sequestration in the liver by facilitating transduction of hepatocytes. Although both coagulation factors FVII and FX bind the hexon protein of human Ad serotype 5 (HAdv5) with a very high affinity, only FX appears to play a role in mediating Ad-hepatocyte transduction in vivo. To understand the discrepancy between efficacy of FVII binding to hexon and its apparently poor capacity for supporting virus cell entry, we analyzed the HAdv5-FVII complex by using high-resolution cryo-electron microscopy (cryo-EM) followed by molecular dynamic flexible fitting (MDFF) simulations. The results indicate that although hexon amino acids T423, E424, and T425, identified earlier as critical for FX binding, are also involved in mediating binding of FVII, the FVII GLA domain sits within the surface-exposed hexon trimer depression in a different orientation from that found for FX. Furthermore, we found that when bound to hexon, two proximal FVII molecules interact via their serine protease (SP) domains and bury potential heparan sulfate proteoglycan (HSPG) receptor binding residues within the dimer interface. In contrast, earlier cryo-EM studies of the Ad-FX interaction showed no evidence of dimer formation. Dimerization of FVII bound to Ad may be a contributing mechanistic factor for the differential infectivity of Ad-FX and Ad-FVII complexes, despite high-affinity binding of both these coagulation factors to the virus.  相似文献   
87.
A new class of co-drugs were synthesised by joining antioxidant edaravone with a vasodilating substructure containing NO-donor nitrooxy functions, and characterised for their stability in different media, lipophilicity and permeability profile. The products display good stability in water/co-solvent at different pH. Conversely, they are rapidly metabolised into edaravone and NO-donor moieties when incubated in human serum or rat-liver homogenates. In the latter conditions time dependent production of nitrite/nitrate (NO(x)) occurs. The compounds display wide-ranging lipophilicity. PAMPA studies predict good gastrointestinal absorption for a number of these compounds. The title products are potentially useful for treating ROS-related conditions accompanied by decreased NO availability.  相似文献   
88.
Escherichia coli (E. coli) mazEF is a stress-induced toxin-antitoxin (TA) module. The toxin MazF is an endoribonuclease that cleaves single-stranded mRNAs at ACA sequences. Here, we show that MazF cleaves at ACA sites at or closely upstream of the AUG start codon of some specific mRNAs and thereby generates leaderless mRNAs. Moreover, we provide evidence that MazF also targets 16S rRNA within 30S ribosomal subunits at the decoding center, thereby removing 43 nucleotides from the 3' terminus. As this region comprises the anti-Shine-Dalgarno (aSD) sequence that is required for translation initiation on canonical mRNAs, a subpopulation of ribosomes is formed that selectively translates the described leaderless mRNAs both in vivo and in vitro. Thus, we have discovered a modified translation machinery that is generated in response to MazF induction and that probably serves for stress adaptation in Escherichia coli.  相似文献   
89.
Acid-sensing ion channels (ASIC) are ligand-gated cation channels that are highly expressed in peripheral sensory and central neurons. ASIC are transiently activated by decreases in extracellular pH and are thought to play important roles in sensory perception, neuronal transmission, and excitability, and in the pathology of neurological conditions, such as brain ischemia. We demonstrate here that the heavy metals Ni(2+) and Cd(2+) dose-dependently inhibit ASIC currents in hippocampus CA1 neurons and in Chinese hamster ovary (CHO) cells heterologously expressing these channels. The effects of both Ni(2+) and Cd(2+) were voltage-independent, fast, and reversible. Neither metal affected activation and desensitization kinetics but rather decreased pH-sensitivity. Moreover, distinct ASIC isoforms were differentially inhibited by Ni(2+) and Cd(2+). External application of 1 mM Ni(2+) rapidly inhibited homomeric ASIC1a and heteromeric ASIC1a/2a channels without affecting ASIC1b, 2a, and ASIC3 homomeric channels and ASIC1a/3 and 2a/3 heteromeric channels. In contrast, external Cd(+) (1 mM) inhibited ASIC2a and ASIC3 homomeric channels and ASIC1a/2a, 1a/3, and 2a/3 heteromeric channels but not ASIC1a homomeric channels. The acid-sensing current in isolated rat hippocampus CA1 neurons, thought to be carried primarily by ASIC1a and 1a/2a, was inhibited by 1 mM Ni(2+). The current study identifies ASIC as a novel target for the neurotoxic heavy metals Cd(2+) and Ni(2+).  相似文献   
90.
The polyphenol trans-resveratrol (3,5,4′-trihydroxy-trans-stilbene) is one of the best known plant secondary metabolites. The number of articles devoted to trans-resveratrol has been steadily increasing. Trans-resveratrol is a molecule that is beneficial to human health; this explains the high level of interest in trans-resveratrol among different research groups. Therefore, it is important to develop an effective method to produce this compound commercially. The applicability of biotechnology for trans-resveratrol extraction is still uncertain. This review describes and compares the available biotechnological methods of trans-resveratrol production, focusing on their advantages and disadvantages.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号