首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   728篇
  免费   45篇
  国内免费   1篇
  774篇
  2023年   4篇
  2022年   12篇
  2021年   16篇
  2020年   9篇
  2019年   19篇
  2018年   17篇
  2017年   17篇
  2016年   24篇
  2015年   24篇
  2014年   48篇
  2013年   57篇
  2012年   50篇
  2011年   73篇
  2010年   33篇
  2009年   26篇
  2008年   46篇
  2007年   43篇
  2006年   38篇
  2005年   29篇
  2004年   36篇
  2003年   28篇
  2002年   16篇
  2001年   6篇
  2000年   11篇
  1999年   13篇
  1998年   8篇
  1997年   8篇
  1996年   3篇
  1995年   4篇
  1993年   5篇
  1992年   2篇
  1991年   5篇
  1990年   4篇
  1988年   2篇
  1986年   2篇
  1985年   4篇
  1984年   4篇
  1982年   4篇
  1980年   2篇
  1975年   3篇
  1974年   1篇
  1972年   3篇
  1971年   2篇
  1970年   2篇
  1969年   1篇
  1968年   1篇
  1967年   1篇
  1962年   1篇
  1958年   1篇
  1954年   1篇
排序方式: 共有774条查询结果,搜索用时 15 毫秒
71.
Green kiwifruit modulates the colonic microbiota in growing pigs   总被引:1,自引:0,他引:1  
Aims: To investigate whether green kiwifruit modulates the composition of colonic microbiota in growing pigs. Methods and Results: Thirty‐two pigs were fed the control diet or one of the three test diets containing either cellulose, freeze‐dried kiwifruit or kiwifruit fibre as the sole fibre source for 14‐day study. A Ward’s dendrogram of similarity cluster analysis on PCR‐DGGE gels revealed that inclusion of freeze‐dried kiwifruit and kiwifruit fibre into diets altered the bacterial community, indicating the presence of two distinct clusters. Quantification of different bacterial groups by qPCR demonstrated that pigs fed the freeze‐dried kiwifruit or kiwifruit fibre diets had a significantly higher number (P < 0·05) of total bacteria and Bacteroides group and a lower number of Enterobacteria and Escherichia coli group, as well as a greater ratio of Lactobacillus to Enterobacteria when compared to pigs fed the control or cellulose diets. Conclusions: Green kiwifruit, mainly because of fibre, modulated the colonic microbiota, leading to an improved intestinal environment in growing pigs. Significance and Impact of the Study: This is the first report regarding the effect of green kiwifruit on gut microbiota using the in vivo pig model. These results provide the first evidence of interaction between green kiwifruit and colonic microbiota.  相似文献   
72.
A novel series of potent DGAT-1 inhibitors was developed originating from the lactam-based clinical candidate PF-04620110. Incorporation of a dioxino[2,3-d]pyrimidine-based core afforded good alignment of pharmacophore features and resulted in improved passive permeability. Development of an efficient, homochiral synthesis of these targets facilitated confirmation of predictions regarding the stereochemical-dependence of DGAT-1 inhibition for this series. Compound 10 was shown to be a potent inhibitor of human DGAT-1 (10 nM) and to suppress triglyceride synthesis at oral doses of <3mg/kg.  相似文献   
73.
Autoregulation and nucleocytoplasmic shuttling play important roles in the operation of the GAL regulatory system. However, the significance of these mechanisms in the overall operation of the switch is unclear. In this work, we develop a dynamic model for the GAL system and further validate the same using steady-state and dynamic experimental expression data. Next, the model is used to delineate the relevance of shuttling and autoregulation in response to inducing, repressing, and non-inducing-non-repressing media. The analysis indicates that autoregulation of the repressor, Gal80p, is key in obtaining three distinct steady states in response to the three media. In particular, the analysis rationalizes the intuitively paradoxical observation that the concentration of repressor, Gal80p, actually increases in response to an increase in the inducer concentration. On the other hand, although nucleocytoplasmic shuttling does not affect the dynamics of the system, it plays a dominant role in obtaining a sensitive response to galactose. The dynamic model was also used to obtain insights on the preculturing effect on the system behavior.  相似文献   
74.
Chromatography is an indispensable unit operation in the downstream processing of biomolecules. Scaling of chromatographic operations typically involves a significant increase in the column diameter. At this scale, the flow distribution within a packed bed could be severely affected by the distributor design in process scale columns. Different vendors offer process scale columns with varying design features. The effect of these design features on the flow distribution in packed beds and the resultant effect on column efficiency and cleanability needs to be properly understood in order to prevent unpleasant surprises on scale‐up. Computational Fluid Dynamics (CFD) provides a cost‐effective means to explore the effect of various distributor designs on process scale performance. In this work, we present a CFD tool that was developed and validated against experimental dye traces and tracer injections. Subsequently, the tool was employed to compare and contrast two commercially available header designs. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:837–844, 2014  相似文献   
75.
In this study, efforts were taken to compare solubilization of Avicel and AFEX pretreated corn stover (AFEX CS) by SSF and Clostridium thermocellum fermentation, with an aim to gain insights into microbial conversion of pretreated cellulosic biomass. Solubilization rates for AFEX CS are comparable for the two systems while solubilization of Avicel is much faster by C. thermocellum. Initial catalyst loading impacts final cellulose conversion for SSF but not for C. thermocellum. Hydrolysis of the two substrates using cell-free C. thermocellum fermentation broth revealed much smaller difference in cellulose conversion than the difference observed for growing cultures. Tests on hemicellulose removal and particle size reduction for AFEX CS indicated that substrate accessibility is very important for enhanced solubilization by C. thermocellum.  相似文献   
76.
Wei Q  Hariharan V  Huang H 《PloS one》2011,6(10):e27064
Control over cell viability is a fundamental property underlying numerous physiological processes. Cell spreading on a substrate was previously demonstrated to be a major factor in determining the viability of individual cells. In multicellular organisms, cell-cell contact is likely to play a significant role in regulating cell vitality, but its function is easily masked by cell-substrate interactions, thus remains incompletely characterized. In this study, we show that suspended immortalized human keratinocyte sheets with persisting intercellular contacts exhibited significant contraction, junctional actin localization, and reinforcement of cell-cell adhesion strength. Further, cells within these sheets remain viable, in contrast to trypsinized cells suspended without either cell-cell or cell-substrate contact, which underwent apoptosis at high rates. Suppression of plakoglobin weakened cell-cell adhesion in cell sheets and suppressed apoptosis in suspended, trypsinized cells. These results demonstrate that cell-cell contact may be a fundamental control mechanism governing cell viability and that the junctional protein plakoglobin is a key regulator of this process. Given the near-ubiquity of plakoglobin in multicellular organisms, these findings could have significant implications for understanding cell adhesion, modeling disease progression, developing therapeutics and improving the viability of tissue engineering protocols.  相似文献   
77.
Histone deacetylases (HDACs) have emerged as effective therapeutic targets in the treatment of various diseases including cancers as these enzymes directly involved in the epigenetic regulation of genes. However the development of isoform-selective HDAC inhibitors has been a challenge till date since all HDAC enzymes possess conserved tunnel-like active site. In this study, using molecular dynamics simulation we have analyzed the behavior of tunnels present in HDAC8, 10, and 11 enzymes of class I, II, and IV, respectively. We have identified the equivalent tunnel forming amino acids in these three isoforms and found that they are very much conserved with subtle differences to be utilized in selective inhibitor development. One amino acid, methionine of HDAC8, among six tunnel forming residues is different in isoforms of other classes (glutamic acid (E) in HDAC10 and leucine (L) in HDAC 11) based on which mutations were introduced in HDAC11, the less studied HDAC isoform, to observe the effects of this change. The HDAC8-like (L268M) mutation in the tunnel forming residues has almost maintained the deep and narrow tunnel as present in HDAC8 whereas HDAC10-like (L268E) mutation has changed the tunnel wider and shallow as observed in HDAC10. These results explained the importance of the single change in the tunnel formation in different isoforms. The observations from this study can be utilized in the development of isoform-selective HDAC inhibitors.  相似文献   
78.
Human physiology is an ensemble of various biological processes spanning from intracellular molecular interactions to the whole body phenotypic response. Systems biology endures to decipher these multi-scale biological networks and bridge the link between genotype to phenotype. The structure and dynamic properties of these networks are responsible for controlling and deciding the phenotypic state of a cell. Several cells and various tissues coordinate together to generate an organ level response which further regulates the ultimate physiological state. The overall network embeds a hierarchical regulatory structure, which when unusually perturbed can lead to undesirable physiological state termed as disease. Here, we treat a disease diagnosis problem analogous to a fault diagnosis problem in engineering systems. Accordingly we review the application of engineering methodologies to address human diseases from systems biological perspective. The review highlights potential networks and modeling approaches used for analyzing human diseases. The application of such analysis is illustrated in the case of cancer and diabetes. We put forth a concept of cell-to-human framework comprising of five modules (data mining, networking, modeling, experimental and validation) for addressing human physiology and diseases based on a paradigm of system level analysis. The review overtly emphasizes on the importance of multi-scale biological networks and subsequent modeling and analysis for drug target identification and designing efficient therapies.  相似文献   
79.
Experimental autoimmune encephalomyelitis (EAE) is a well-established murine model of multiple sclerosis, an immune-mediated demyelinating disorder of the central nervous system (CNS). We have previously shown that CNS-specific CD8+ T cells (CNS-CD8+) ameliorate EAE, at least in part through modulation of CNS-specific CD4+ T cell responses. In this study, we show that CNS-CD8+ also modulate the function of CD11c+ dendritic cells (DC), but not other APCs such as CD11b+ monocytes or B220+ B cells. DC from mice receiving either myelin oligodendrocyte glycoprotein-specific CD8+ (MOG-CD8+) or proteolipid protein-specific CD8+ (PLP-CD8+) T cells were rendered inefficient in priming T cell responses from naïve CD4+ T cells (OT-II) or supporting recall responses from CNS-specific CD4+ T cells. CNS-CD8+ did not alter DC subset distribution or MHC class II and CD86 expression, suggesting that DC maturation was not affected. However, the cytokine profile of DC from CNS-CD8+ recipients showed lower IL-12 and higher IL-10 production. These functions were not modulated in the absence of immunization with CD8-cognate antigen, suggesting an antigen-specific mechanism likely requiring CNS-CD8-DC interaction. Interestingly, blockade of IL-10 in vitro rescued CD4+ proliferation and in vivo expression of IL-10 was necessary for the suppression of EAE by MOG-CD8+. These studies demonstrate a complex interplay between CNS-specific CD8+ T cells, DC and pathogenic CD4+ T cells, with important implications for therapeutic interventions in this disease.  相似文献   
80.
ATP-Binding Cassette transporters (ABC transporters) are protein complexes involved in the import and export of different molecules, including ions, sugars, peptides, drugs, and others. Due to the diversity of substrates, they have large relevance in physiological processes such as virulence, pathogenesis, and antimicrobial resistance. In Xanthomonas citri subsp. citri, the phytopathogen responsible for the citrus canker disease, 20% of ABC transporters components are expressed under infection conditions, including the putative putrescine/polyamine ABC transporter, PotFGHI. Polyamines are ubiquitous molecules that mediate cell growth and proliferation and play important role in bacterial infections. In this work, we characterized the X. citri periplasmic-binding protein PotF (XAC2476) using bioinformatics, biophysical and structural methods. PotF is highly conserved in Xanthomonas sp. genus, and we showed it is part of a set of proteins related to the import and assimilation of polyamines in X. citri. The interaction of PotF with putrescine and spermidine was direct and indirectly shown through fluorescence spectroscopy analyses, and experiments of circular dichroism (CD) and small-angle X-ray scattering (SAXS), respectively. The protein showed higher affinity for spermidine than putrescine, but both ligands induced structural changes that coincided with the closing of the domains and increasing of thermal stability.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号