首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   438篇
  免费   31篇
  国内免费   3篇
  2024年   1篇
  2023年   2篇
  2022年   13篇
  2021年   17篇
  2020年   8篇
  2019年   6篇
  2018年   9篇
  2017年   15篇
  2016年   12篇
  2015年   23篇
  2014年   24篇
  2013年   32篇
  2012年   52篇
  2011年   38篇
  2010年   29篇
  2009年   16篇
  2008年   28篇
  2007年   25篇
  2006年   29篇
  2005年   18篇
  2004年   19篇
  2003年   7篇
  2002年   7篇
  2001年   7篇
  2000年   4篇
  1999年   2篇
  1998年   1篇
  1997年   2篇
  1996年   4篇
  1995年   5篇
  1994年   4篇
  1992年   3篇
  1991年   3篇
  1990年   2篇
  1989年   2篇
  1987年   1篇
  1986年   1篇
  1949年   1篇
排序方式: 共有472条查询结果,搜索用时 15 毫秒
51.
Mosquito larvicidal and repellent activities of phenolic acids of Chaetomorpha antennina (Bory) Kuetz. against the third instar larvae of Aedes aegypti were investigated. The larval mortality was observed after 24 h exposure. Results of mosquito larvicidal tests revealed that insoluble bound phenolic acids and soluble conjugated phenolic acid fractions of C. antennina had an excellent inhibitory effect against A. aegypti and its LC50 values were 23.4 and 44.6 μg ml−1, respectively. The repellency assay of insoluble bound phenolic acids and soluble conjugated phenolic acid fractions of C. antennina, at 10 μg cm−2 concentration gave 100% protection up to 120 min. The results indicate that phenolic acids of C. antennina have a wide spectrum of larvicidal and repellent activities against Aedes aegypti.  相似文献   
52.
53.
54.
55.
Avian influenza virus (AIV) subtype H5N1 was first discovered in the 1990 s and since then its emergence has become a likely source of a global pandemic and economic loss. Currently accepted gold standard methods of influenza detection, viral culture and rRT-PCR, are time consuming, expensive and require special training and laboratory facilities. A rapid, sensitive, and specific screening method is needed for in-field or bedside testing of AI virus to effectively implement quarantines and medications. Therefore, the objective of this study was to improve the specificity and sensitivity of an impedance biosensor that has been developed for the screening of AIV H5. Three major components of the developed biosensor are immunomagnetic nanoparticles for the separation of AI virus, a microfluidic chip for sample control and an interdigitated microelectrode for impedance measurement. In this study polyclonal antibody against N1 subtype was immobilized on the surface of the microelectrode to specifically bind AIV H5N1 to generate more specific impedance signal and chicken red blood cells (RBC) were used as biolabels to attach to AIV H5N1 captured on the microelectrode to amplify impedance signal. RBC amplification was shown to increase the impedance signal change by more than 100% compared to the protocol without RBC biolabels, and was necessary for forming a linear calibration curve for the biosensor. The use of a second antibody against N1 offered much greater specificity and reliability than the previous biosensor protocol. The biosensor was able to detect AIV H5N1 at concentrations down to 10(3) EID(50)ml(-1) in less than 2h.  相似文献   
56.
Two tomato proteins were evaluated by over-expression in transgenic tomato for their ability to confer resistance to Clavibacter michiganensis subsp. michiganensis (Cmm). Snakin-2 (SN2) is a cysteine-rich peptide with broad-spectrum antimicrobial activity in vitro while extensin-like protein (ELP) is a major cell-wall hydroxyproline-rich glycoprotein linked with plant response to pathogen attack and wounding. Tomato plants, cultivar Mountain Fresh, were transformed via Agrobacterium tumefaciens harboring a binary vector for expression of the full-length SN2 gene or ELP cDNA under the regulation of the CaMV 35S promoter. Molecular characterization of PCR-positive putative T0 transgenic plants by Northern analysis revealed constitutive over-expression of SN2 and ELP mRNA. Junction fragment analysis by Southern blot showed that three of the four SN2 over-expressing T0 lines had single copies of complete T-DNAs while the other line had two complete T-DNA copies. All four ELP over-expressing T0 lines had a single copy T-DNA insertion. Semi-quantitative RT-PCR analysis of T1 plants revealed constitutive over-expression of SN2 and ELP. Transgenic lines that accumulated high levels of SN2 or ELP mRNA showed enhanced tolerance to Cmm resulting in a significant delay in the development of wilt symptoms and a reduction in the size of canker lesions compared to non-transformed control plants. Furthermore, in transgenic lines over-expressing SN2 or ELP bacterial populations were significantly lower (100–10,000-fold) than in non-transformed control plants. These results demonstrate that SN2 and ELP over-expression limits Cmm invasiveness suggesting potential in vivo antibacterial activity and possible biotechnological application for these two defense proteins.  相似文献   
57.
Polyanhydrides are a class of biomaterials with excellent biocompatibility and drug delivery capabilities. While they have been studied extensively with conventional one-sample-at-a-time synthesis techniques, a more recent high-throughput approach has been developed enabling the synthesis and testing of large libraries of polyanhydrides1. This will facilitate more efficient optimization and design process of these biomaterials for drug and vaccine delivery applications. The method in this work describes the combinatorial synthesis of biodegradable polyanhydride film and nanoparticle libraries and the high-throughput detection of protein release from these libraries. In this robotically operated method (Figure 1), linear actuators and syringe pumps are controlled by LabVIEW, which enables a hands-free automated protocol, eliminating user error. Furthermore, this method enables the rapid fabrication of micro-scale polymer libraries, reducing the batch size while resulting in the creation of multivariant polymer systems. This combinatorial approach to polymer synthesis facilitates the synthesis of up to 15 different polymers in an equivalent amount of time it would take to synthesize one polymer conventionally. In addition, the combinatorial polymer library can be fabricated into blank or protein-loaded geometries including films or nanoparticles upon dissolution of the polymer library in a solvent and precipitation into a non-solvent (for nanoparticles) or by vacuum drying (for films). Upon loading a fluorochrome-conjugated protein into the polymer libraries, protein release kinetics can be assessed at high-throughput using a fluorescence-based detection method (Figures 2 and 3) as described previously1. This combinatorial platform has been validated with conventional methods2 and the polyanhydride film and nanoparticle libraries have been characterized with 1H NMR and FTIR. The libraries have been screened for protein release kinetics, stability and antigenicity; in vitro cellular toxicity, cytokine production, surface marker expression, adhesion, proliferation and differentiation; and in vivo biodistribution and mucoadhesion1-11. The combinatorial method developed herein enables high-throughput polymer synthesis and fabrication of protein-loaded nanoparticle and film libraries, which can, in turn, be screened in vitro and in vivo for optimization of biomaterial performance.  相似文献   
58.
The CYP1A1 gene encodes for the enzyme, aryl hydrocarbon hydroxylase, which is involved in the biotransformation of various aromatic tobacco precarcinogens. In the present study, the association between CYP1A1 gene polymorphisms (IVS1-728G > A, Thr461Asn and Ile462Val), and the risk of oral cancer, was examined among 157 patients with oral cancer and 132 age-matched controls, in a south Indian population. The strength of the association between CYP1A1 variants and oral cancer was estimated by logistic regression. It was found that Thr461Asn was not polymorphic. Both IVS1-728G > A and Ile462Val frequencies were consistent with Hardy-Weinberg equilibrium in the control group. There were no significant differences in genotype or haplotype frequencies between controls and cases with oral cancer. Hence, CYP1A1 SNPs can be considered as not being associated with oral cancer at either the genotype or haplotype levels in the population studied.  相似文献   
59.
Influenza A virus (IAV) is a leading cause of respiratory tract disease worldwide. Anti-viral CD8+ T lymphocytes responding to IAV infection are believed to eliminate virally infected cells by direct cytolysis but may also contribute to pulmonary inflammation and tissue damage via the release of pro-inflammatory mediators following recognition of viral antigen displaying cells. We have previously demonstrated that IAV antigen expressing inflammatory cells of hematopoietic origin within the infected lung interstitium serve as antigen presenting cells (APC) for infiltrating effector CD8+ T lymphocytes; however, the spectrum of inflammatory cell types capable of serving as APC was not determined. Here, we demonstrate that viral antigen displaying neutrophils infiltrating the IAV infected lungs are an important cell type capable of acting as APC for effector CD8+ T lymphocytes in the infected lungs and that neutrophils expressing viral antigen as a result of direct infection by IAV exhibit the most potent APC activity. Our findings suggest that in addition to their suggested role in induction of the innate immune responses to IAV, virus clearance, and the development of pulmonary injury, neutrophils can serve as APCs to anti-viral effector CD8+ T cells within the infected lung interstitium.  相似文献   
60.
Influenza A virus infects 5-20% of the population annually, resulting in ~35,000 deaths and significant morbidity. Current treatments include vaccines and drugs that target viral proteins. However, both of these approaches have limitations, as vaccines require yearly development and the rapid evolution of viral proteins gives rise to drug resistance. In consequence additional intervention strategies, that target host factors required for the viral life cycle, are under investigation. Here we employed arrayed whole-genome siRNA screening strategies to identify cell-autonomous molecular components that are subverted to support H1N1 influenza A virus infection of human bronchial epithelial cells. Integration across relevant public data sets exposed druggable gene products required for epithelial cell infection or required for viral proteins to deflect host cell suicide checkpoint activation. Pharmacological inhibition of representative targets, RGGT and CHEK1, resulted in significant protection against infection of human epithelial cells by the A/WS/33 virus. In addition, chemical inhibition of RGGT partially protected against H5N1 and the 2009 H1N1 pandemic strain. The observations reported here thus contribute to an expanding body of studies directed at decoding vulnerabilities in the command and control networks specified by influenza virulence factors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号