首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5214篇
  免费   391篇
  国内免费   2篇
  2023年   17篇
  2022年   39篇
  2021年   65篇
  2020年   59篇
  2019年   64篇
  2018年   81篇
  2017年   107篇
  2016年   123篇
  2015年   230篇
  2014年   238篇
  2013年   317篇
  2012年   434篇
  2011年   424篇
  2010年   266篇
  2009年   231篇
  2008年   354篇
  2007年   310篇
  2006年   301篇
  2005年   271篇
  2004年   272篇
  2003年   282篇
  2002年   237篇
  2001年   68篇
  2000年   54篇
  1999年   64篇
  1998年   58篇
  1997年   39篇
  1996年   53篇
  1995年   46篇
  1994年   34篇
  1993年   29篇
  1992年   49篇
  1991年   21篇
  1990年   29篇
  1989年   30篇
  1988年   27篇
  1987年   25篇
  1986年   22篇
  1985年   29篇
  1984年   20篇
  1983年   21篇
  1982年   15篇
  1981年   15篇
  1979年   13篇
  1978年   11篇
  1977年   12篇
  1976年   9篇
  1975年   11篇
  1972年   10篇
  1970年   9篇
排序方式: 共有5607条查询结果,搜索用时 500 毫秒
991.
Cutaneous malignant melanoma (CMM) is the most serious type of skin cancer because of its tendency to metastasize. The prognosis and therapeutic management of patients are primarily based on clinical criteria (number of cancerous lymph nodes and/or the presence of distant metastases) and histopathological criteria (tumor depth, presence of ulceration and mitotic index). Although these factors are informative in advanced stages of the disease, they are less important in the early stages. In recent years, a number of attempts have been made to identify new serological prognostic biomarkers, especially for early forms of CMM. The recent development of proteomic techniques may offer new perspectives in this field. This article details the considerations of each of the proteomic techniques used today and describes the results of the most recent clinical studies conducted to identify new potential prognostic serum biomarkers for CMM. However, independent and large validation studies are needed before such markers can be used in everyday clinical practice.  相似文献   
992.
We designed an efficient transformation system for Candida guilliermondii based on a ura5 ATCC 6260 derived recipient strain and a URA5 recyclable selection marker. This “URA5 blaster” disruption system represents a powerful tool to study the function of a large pallet of genes in this yeast of clinical and biotechnological interest.  相似文献   
993.
Using a combination of reversed-phase HPLC and electrospray mass spectrometry, peptidomic analysis of norepinephrine-stimulated skin secretions of the American bullfrog Lithobates catesbeianus Shaw, 1802 led to the identification and characterization of five newly described peptides (ranatuerin-1CBb, ranatuerin-2CBc, and -CBd, palustrin-2CBa, and temporin-CBf) together with seven peptides previously isolated on the basis of their antimicrobial activity (ranatuerin-1CBa, ranatuerin-2CBa, brevinin-1CBa, and -1CBb, temporin-CBa, -CBb, and -CBd). The abilities of the most abundant of the purified peptides to stimulate the release of insulin from the rat BRIN-BD11 clonal β cell line were evaluated. Ranatuerin-2CBd (GFLDIIKNLGKTFAGHMLDKIRCTIGTCPPSP) was the most potent peptide producing a significant stimulation of insulin release (119% of basal rate, P < 0.01) from BRIN-BD11 cells at a concentration of 30 nM, with a maximum response (236% of basal rate, P < 0.001) at a concentration of 3 μM. Ranatuerin-2CBd did not stimulate release of the cytosolic enzyme, lactate dehydrogenase at concentrations up to 3 μM, indicating that the integrity of the plasma membrane had been preserved. Brevinin-1CBb (FLPFIARLAAKVFPSIICSVTKKC) produced the maximum stimulation of insulin release (285% of basal rate, P < 0.001 at 3 μM) but the peptide was cytotoxic at this concentration.  相似文献   
994.
Probing cationic selectivity of cardiac calsequestrin and its CPVT mutants   总被引:1,自引:0,他引:1  
CASQ (calsequestrin) is a Ca2+-buffering protein localized in the muscle SR (sarcoplasmic reticulum); however, it is unknown whether Ca2+ binding to CASQ2 is due to its location inside the SR rich in Ca2+ or due to its preference for Ca2+ over other ions. Therefore a major aim of the present study was to determine how CASQ2 selects Ca2+ over other metal ions by studying monomer folding and subsequent aggregation upon exposure to alkali (monovalent), alkaline earth (divalent) and transition (polyvalent) metals. We additionally investigated how CPVT (catecholaminergic polymorphic ventricular tachycardia) mutations affect CASQ2 structure and its molecular behaviour when exposed to different metal ions. Our results show that alkali and alkaline earth metals can initiate similar molecular compaction (folding), but only Ca2+ can promote CASQ2 to aggregate, suggesting that CASQ2 has a preferential binding to Ca2+ over all other metals. We additionally found that transition metals (having higher co-ordinated bonding ability than Ca2+) can also initiate folding and promote aggregation of CASQ2. These studies led us to suggest that folding and formation of higher-order structures depends on cationic properties such as co-ordinate bonding ability and ionic radius. Among the CPVT mutants studied, the L167H mutation disrupts the Ca2+-dependent folding and, when folding is achieved by Mn2+, L167H can undergo aggregation in a Ca2+-dependent manner. Interestingly, domain III mutants (D307H and P308L) lost their selectivity to Ca2+ and could be aggregated in the presence of Mg2+. In conclusion, these studies suggest that CPVT mutations modify CASQ2 behaviour, including folding, aggregation/polymerization and selectivity towards Ca2+.  相似文献   
995.
The oxidized bile acid 7-oxoLCA (7-oxolithocholic acid), formed primarily by gut micro-organisms, is reduced in human liver to CDCA (chenodeoxycholic acid) and, to a lesser extent, UDCA (ursodeoxycholic acid). The enzyme(s) responsible remained unknown. Using human liver microsomes, we observed enhanced 7-oxoLCA reduction in the presence of detergent. The reaction was dependent on NADPH and stimulated by glucose 6-phosphate, suggesting localization of the enzyme in the ER (endoplasmic reticulum) and dependence on NADPH-generating H6PDH (hexose-6-phosphate dehydrogenase). Using recombinant human 11β-HSD1 (11β-hydroxysteroid dehydrogenase 1), we demonstrate efficient conversion of 7-oxoLCA into CDCA and, to a lesser extent, UDCA. Unlike the reversible metabolism of glucocorticoids, 11β-HSD1 mediated solely 7-oxo reduction of 7-oxoLCA and its taurine and glycine conjugates. Furthermore, we investigated the interference of bile acids with 11β-HSD1-dependent interconversion of glucocorticoids. 7-OxoLCA and its conjugates preferentially inhibited cortisone reduction, and CDCA and its conjugates inhibited cortisol oxidation. Three-dimensional modelling provided an explanation for the binding mode and selectivity of the bile acids studied. The results reveal that 11β-HSD1 is responsible for 7-oxoLCA reduction in humans, providing a further link between hepatic glucocorticoid activation and bile acid metabolism. These findings also suggest the need for animal and clinical studies to explore whether inhibition of 11β-HSD1 to reduce cortisol levels would also lead to an accumulation of 7-oxoLCA, thereby potentially affecting bile acid-mediated functions.  相似文献   
996.
Here we investigate the mechanisms regulating Greatwall (Gwl), a serine/threonine kinase essential for promoting the correct timing of mitosis. We identify Gwl as a unique AGC kinase that, unlike most AGC members, appears to be devoid of a hydrophobic motif despite the presence of a functional hydrophobic pocket. Our results suggest that Gwl activation could be mediated by the binding of its hydrophobic pocket to the hydrophobic motif of another AGC kinase. Our molecular modeling and mutagenic analysis also indicate that Gwl displays a conserved tail/linker site whose phosphorylation mediates kinase activation by promoting the interaction of this phosphorylated residue with two lysines at the N terminus. This interaction could stabilize the αC-helix and maintain kinase activity. Finally, the different phosphorylation sites on Gwl are identified, and the role of each one in the regulation of Gwl kinase activity is determined. Our data suggest that only the phosphorylation of the tail/linker site, located outside the putative T loop, appears to be essential for Gwl activation. In summary, our results identify Gwl as a member of the AGC family of kinases that appears to be regulated by unique mechanisms and that differs from the other members of this family.  相似文献   
997.
Dacarbazine (DTIC) is the treatment of choice for metastatic melanoma, but its response in patients remains very poor. Ceramide has been shown to be a death effector and to play an important role in regulating cancer cell growth upon chemotherapy. Among ceramidases, the enzymes that catabolize ceramide, acid ceramidase (aCDase) has been implicated in cancer progression. Here we show that DTIC elicits a time- and dose-dependent decrease of aCDase activity and an increase of intracellular ceramide levels in human A375 melanoma cells. The loss of enzyme activity occurred as a consequence of reactive oxygen species-dependent activation of cathepsin B-mediated degradation of aCDase. These events preceded autophagic features and loss of cell viability. Down-regulation of acid but not neutral or alkaline ceramidase 2 resulted in elevated levels of ceramide and sensitization to the toxic effects of DTIC. Conversely, inducible overexpression of acid but not neutral ceramidase reduced ceramide levels and conferred resistance to DTIC. In conclusion, we report that increased levels of ceramide, due to enhanced degradation of aCDase, are in part responsible for the cell death effects of DTIC. These results suggest that down-regulation of aCDase alone or in combination with DTIC may represent a useful tool in the treatment of metastatic melanoma.  相似文献   
998.
It is uncertain whether NK cells modulate T cell memory differentiation. By using a genetic model that allows the selective depletion of NK cells, we show in this study that NK cells shape CD8(+) T cell fate by killing recently activated CD8(+) T cells in an NKG2D- and perforin-dependent manner. In the absence of NK cells, the differentiation of CD8(+) T cells is strongly biased toward a central memory T cell phenotype. Although, on a per-cell basis, memory CD8(+) T cells generated in the presence or the absence of NK cells have similar functional features and recall capabilities, NK cell deletion resulted in a significantly higher number of memory Ag-specific CD8(+) T cells, leading to more effective control of tumors carrying model Ags. The enhanced memory responses induced by the transient deletion of NK cells may provide a rational basis for the design of new vaccination strategies.  相似文献   
999.
1000.
The broadly neutralizing human monoclonal antibody 2G12 binds to a carbohydrate-dependent epitope involving three major potential N-linked glycosylation sites (PNGS) of gp120 (N295, N332, and N392). Through analysis of the sensitivity to 2G12 of pseudotyped viruses carrying envelope proteins from HIV-1 clade B-infected long-term nonprogressors, we selected two naturally occurring env clones with opposite sensitivities to 2G12, albeit harboring the 3 particular PNGS known to be essential for 2G12 binding (N295, N332, and N392). The resistant clone presented a long and potentially heavily glycosylated V1V2 loop and an additional PNGS (N302) in the V3 loop. The sensitive clone harbored a short V1V2 loop and lacked the PNGS at N302. We created chimeric envelope genes by swapping the V1V2 domains of the two env clones. The influence of N302 on 2G12 sensitivity was assessed by PCR-based site-directed mutagenesis. Both the exchange of the V1V2 domain and the introduction of the PNGS at N302 on the 2G12-sensitive clone induced a significant decrease in sensitivity to 2G12. In contrast, the reverse V1V2 exchange and the removal of the PNGS at N302 on the 2G12-resistant clone increased sensitivity to 2G12, confirming the influence of these regions on 2G12 sensitivity. Our results, supported by a molecular-modeling study, suggest that both the V1V2 loop and an additional PNGS in V3 might limit access to the 2G12 epitope.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号