全文获取类型
收费全文 | 166篇 |
免费 | 4篇 |
专业分类
170篇 |
出版年
2023年 | 1篇 |
2021年 | 7篇 |
2020年 | 5篇 |
2019年 | 5篇 |
2018年 | 5篇 |
2017年 | 1篇 |
2016年 | 7篇 |
2015年 | 10篇 |
2014年 | 18篇 |
2013年 | 15篇 |
2012年 | 8篇 |
2011年 | 10篇 |
2010年 | 10篇 |
2009年 | 5篇 |
2008年 | 9篇 |
2007年 | 6篇 |
2006年 | 9篇 |
2005年 | 8篇 |
2004年 | 6篇 |
2003年 | 2篇 |
2002年 | 1篇 |
2001年 | 4篇 |
2000年 | 3篇 |
1999年 | 2篇 |
1998年 | 1篇 |
1997年 | 1篇 |
1996年 | 1篇 |
1995年 | 1篇 |
1992年 | 1篇 |
1987年 | 1篇 |
1984年 | 1篇 |
1983年 | 2篇 |
1980年 | 1篇 |
1979年 | 1篇 |
1966年 | 1篇 |
1963年 | 1篇 |
排序方式: 共有170条查询结果,搜索用时 15 毫秒
11.
Amanda A. Melillo Manish Mahawar Timothy J. Sellati Meenakshi Malik Dennis W. Metzger J. Andres Melendez Chandra Shekhar Bakshi 《Journal of bacteriology》2009,191(20):6447-6456
Francisella tularensis is an intracellular pathogen whose survival is in part dependent on its ability to resist the microbicidal activity of host-generated reactive oxygen species (ROS) and reactive nitrogen species (RNS). In numerous bacterial pathogens, CuZn-containing superoxide dismutases (SodC) are important virulence factors, localizing to the periplasm to offer protection from host-derived superoxide radicals (O2−). In the present study, mutants of F. tularensis live vaccine strain (LVS) deficient in superoxide dismutases (SODs) were used to examine their role in defense against ROS/RNS-mediated microbicidal activity of infected macrophages. An in-frame deletion F. tularensis mutant of sodC (ΔsodC) and a F. tularensis ΔsodC mutant with attenuated Fe-superoxide dismutase (sodB) gene expression (sodB ΔsodC) were constructed and evaluated for susceptibility to ROS and RNS in gamma interferon (IFN-γ)-activated macrophages and a mouse model of respiratory tularemia. The F. tularensis ΔsodC and sodB ΔsodC mutants showed attenuated intramacrophage survival in IFN-γ-activated macrophages compared to the wild-type F. tularensis LVS. Transcomplementing the sodC gene in the ΔsodC mutant or inhibiting the IFN-γ-dependent production of O2− or nitric oxide (NO) enhanced intramacrophage survival of the sod mutants. The ΔsodC and sodB ΔsodC mutants were also significantly attenuated for virulence in intranasally challenged C57BL/6 mice compared to the wild-type F. tularensis LVS. As observed for macrophages, the virulence of the ΔsodC mutant was restored in ifn-γ−/−, inos−/−, and phox−/− mice, indicating that SodC is required for resisting host-generated ROS. To conclude, this study demonstrates that SodB and SodC act to confer protection against host-derived oxidants and contribute to intramacrophage survival and virulence of F. tularensis in mice.Francisella tularensis is considered a potential biological threat due to its extreme infectivity, ease of artificial dissemination via aerosols, and substantial capacity to cause illness and death. A hallmark of all F. tularensis subspecies is their ability to survive and replicate within macrophages (18) and other cell types (6, 11, 25, 28). While recent work has furthered our understanding of F. tularensis virulence mechanisms, little is known with respect to its ability to resist the microbicidal production of reactive oxygen species (ROS) or reactive nitrogen species (RNS).Superoxide dismutases (SODs) are metalloproteins that are classified according to their coordinating active site metals. SODs catalyze the dismutation of the highly reactive superoxide (O2−) anion to hydrogen peroxide (H2O2) and O2 (26). The dismutation of O2− prevents accumulation of microbicidal ROS and RNS in infected macrophages. Three major categories of SODs have been identified in bacteria and include Mn-, Fe-, and CuZn-containing SODs (SodA, SodB, and SodC, respectively) and are required for aerobic survival (27). The F. tularensis genome encodes SodB (FTL_1791) and SodC (FTL_0380). In several intracellular bacterial pathogens, SodC is an important virulence factor, and its localization to the periplasmic space protects bacteria from host-derived O2− and NO radicals (8, 9, 21, 32). Moreover, many virulent bacteria possess two copies of the sodC gene (4). The evolutionary maintenance of an extra sodC gene copy suggests that it serves some essential function in survival (4). As an intracellular pathogen, F. tularensis is exposed to ROS and RNS generated by inflammatory cells during the macrophage activation process, which suggests that SODs may play an important role in its intracellular survival and pathogenesis. We have demonstrated that decreases in SodB activity render F. tularensis sensitive to ROS and attenuate virulence in mice (2). However, the contribution of F. tularensis SodC in virulence and intramacrophage survival has not been defined. In this study we have constructed a F. tularensis sodC mutant (ΔsodC) and a F. tularensis sodBC double mutant (sodB ΔsodC) and determined that SodC in conjunction with SodB primarily protects the pathogen from host-derived ROS and is required for intramacrophage survival and virulence of F. tularensis in mice. 相似文献
12.
13.
Rahul Bakshi Sanjeev Galande K. Muniyappa 《Journal of biomolecular structure & dynamics》2013,31(5):749-760
Abstract Topoisomerase II (topo II) is a dyadic enzyme found in all eukaryotic cells. Topo II is involved in a number of cellular processes related to DNA metabolism, including DNA replication, recombination and the maintenance of genomic stability. We discovered a correlation between the development of postnatal testis and increased binding of topo IIα to the chromatin fraction. We used this observation to characterize DNA-binding specificity and catalytic properties of purified testis topo IIα. The results indicate that topo IIα binds a substrate containing the preferred site with greater affinity and, consequently, catalyzes the conversion of form I to form IV DNA more efficiently in contrast to substrates lacking such a site. Interestingly, topo IIα displayed high-affinity and cooperativity in binding to the scaffold associated region. In contrast to the preferred site, however, high-affinity binding of topo IIα to the scaffold-associated region failed to result in enhanced catalytic activity. Intriguingly, competition assays involving scaffold-associated region revealed an additional DNA-binding site within the dyadic topo IIα. These results implicate a dual role for topo IIα in vivo consistent with the notion that its sequestration to the chromatin might play a role in chromosome condensation and decondensation during spermatogenesis. 相似文献
14.
15.
Bakshi CS Singh VP Wood MW Jones PW Wallis TS Galyov EE 《Journal of bacteriology》2000,182(8):2341-2344
Type III secreted Sop protein effectors are delivered into target eukaryotic cells and elicit cellular responses underlying Salmonella pathogenicity. In this work, we have identified another secreted protein, SopE2, and showed that SopE2 is an important invasion-associated effector. SopE2 is encoded by the sopE2 gene which is present and conserved in pathogenic strains of Salmonella. SopE2 is highly homologous to SopE, a protein encoded by a gene within a temperate bacteriophage and present in only some pathogenic strains. 相似文献
16.
Hong Q Bakshi RK Palucki BL Park MK Ye Z He S Pollard PG Sebhat IK Liu J Guo L Cashen DE Martin WJ Weinberg DH MacNeil T Tang R Tamvakopoulos C Peng Q Miller RR Stearns RA Chen HY Chen AS Strack AM Fong TM MacIntyre DE Wyvratt MJ Nargund RP 《Bioorganic & medicinal chemistry letters》2011,21(8):2330-2334
We report the discovery of piperazine urea based compound 1, a potent, selective, orally bioavailable melanocortin subtype-4 receptor partial agonist. Compound 1 shows anti-obesity efficacy without potentiating erectile activity in the rodent models. 相似文献
17.
Vidya P. Nair Saumya Anang Chandru Subramani Abhilasha Madhvi Karishma Bakshi Akriti Srivastava Shalimar Baibaswata Nayak Ranjith Kumar CT Milan Surjit 《PLoS pathogens》2016,12(4)
Hepatitis E virus (HEV) causes acute hepatitis in many parts of the world including Asia, Africa and Latin America. Though self-limiting in normal individuals, it results in ~30% mortality in infected pregnant women. It has also been reported to cause acute and chronic hepatitis in organ transplant patients. Of the seven viral genotypes, genotype-1 virus infects humans and is a major public health concern in South Asian countries. Sporadic cases of genotype-3 and 4 infection in human and animals such as pigs, deer, mongeese have been reported primarily from industrialized countries. Genotype-5, 6 and 7 viruses are known to infect animals such as wild boar and camel, respectively. Genotype-3 and 4 viruses have been successfully propagated in the laboratory in mammalian cell culture. However, genotype-1 virus replicates poorly in mammalian cell culture and no other efficient model exists to study its life cycle. Here, we report that endoplasmic reticulum (ER) stress promotes genotype-1 HEV replication by inducing cap-independent, internal initiation mediated translation of a novel viral protein (named ORF4). Importantly, ORF4 expression and stimulatory effect of ER stress inducers on viral replication is specific to genotype-1. ORF4 protein sequence is mostly conserved among genotype-1 HEV isolates and ORF4 specific antibodies were detected in genotype-1 HEV patient serum. ORF4 interacted with multiple viral and host proteins and assembled a protein complex consisting of viral helicase, RNA dependent RNA polymerase (RdRp), X, host eEF1α1 (eukaryotic elongation factor 1 isoform-1) and tubulinβ. In association with eEF1α1, ORF4 stimulated viral RdRp activity. Furthermore, human hepatoma cells that stably express ORF4 or engineered proteasome resistant ORF4 mutant genome permitted enhanced viral replication. These findings reveal a positive role of ER stress in promoting genotype-1 HEV replication and pave the way towards development of an efficient model of the virus. 相似文献
18.
Mohanan Manoj Vadakkenchery Pushpanathan Anunanthini Padmanabhan Sarath Sasikumar Thelakat Jayanarayanan Ashwin Narayan Selvarajan Dharshini Ramalingam Sathishkumar Ram Bakshi Chinnaswamy Appunu 《Journal of plant research》2021,134(5):1083-1094
Journal of Plant Research - The glyoxalase pathway is a check point to monitor the elevation of methylglyoxal (MG) level in plants and is mediated by glyoxalase I (Gly I) and glyoxalase II (Gly II)... 相似文献
19.
Abstract: Obtaining reliable results from life-cycle assessment studies is often quite difficult because life-cycle inventory (LCI) data are usually erroneous, incomplete, and even physically meaningless. The real data must satisfy the laws of thermodynamics, so the quality of LCI data may be enhanced by adjusting them to satisfy these laws. This is not a new idea, but a formal thermodynamically sound and statistically rigorous approach for accomplishing this task is not yet available. This article proposes such an approach based on methods for data rectification developed in process systems engineering. This approach exploits redundancy in the available data and models and solves a constrained optimization problem to remove random errors and estimate some missing values. The quality of the results and presence of gross errors are determined by statistical tests on the constraints and measurements. The accuracy of the rectified data is strongly dependent on the accuracy and completeness of the available models, which should capture information such as the life-cycle network, stream compositions, and reactions. Such models are often not provided in LCI databases, so the proposed approach tackles many new challenges that are not encountered in process data rectification. An iterative approach is developed that relies on increasingly detailed information about the life-cycle processes from the user. A comprehensive application of the method to the chlor-alkali inventory being compiled by the National Renewable Energy Laboratory demonstrates the benefits and challenges of this approach. 相似文献
20.
U Sarma A Sareen M Maiti V Kamat R Sudan S Pahari N Srivastava S Roy S Sinha I Ghosh AG Chande R Mukhopadhyaya B Saha 《PloS one》2012,7(7):e39898
Depending on the strength of signal dose, CD40 receptor (CD40) controls ERK-1/2 and p38MAPK activation. At low signal dose, ERK-1/2 is maximally phosphorylated but p38MAPK is minimally phosphorylated; as the signal dose increases, ERK-1/2 phosphorylation is reduced whereas p38MAPK phosphorylation is reciprocally enhanced. The mechanism of reciprocal activation of these two MAPKs remains un-elucidated. Here, our computational model, coupled to experimental perturbations, shows that the observed reciprocity is a system-level behavior of an assembly of kinases arranged in two modules. Experimental perturbations with kinase inhibitors suggest that a minimum of two trans-modular negative feedback loops are required to reproduce the experimentally observed reciprocity. The bi-modular architecture of the signaling pathways endows the system with an inherent plasticity which is further expressed in the skewing of the CD40-induced productions of IL-10 and IL-12, the respective anti-inflammatory and pro-inflammatory cytokines. Targeting the plasticity of CD40 signaling significantly reduces Leishmania major infection in a susceptible mouse strain. Thus, for the first time, using CD40 signaling as a model, we show how a bi-modular assembly of kinases imposes reciprocity to a receptor signaling. The findings unravel that the signalling plasticity is inherent to a reciprocal system and that the principle can be used for designing a therapy. 相似文献