首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   193篇
  免费   17篇
  2022年   3篇
  2021年   3篇
  2020年   1篇
  2019年   1篇
  2017年   5篇
  2016年   5篇
  2015年   3篇
  2014年   12篇
  2013年   8篇
  2012年   10篇
  2011年   11篇
  2010年   7篇
  2009年   7篇
  2008年   10篇
  2007年   5篇
  2006年   13篇
  2005年   6篇
  2004年   6篇
  2003年   4篇
  2002年   4篇
  2001年   7篇
  2000年   10篇
  1999年   7篇
  1998年   7篇
  1997年   2篇
  1996年   2篇
  1995年   2篇
  1994年   2篇
  1993年   1篇
  1992年   2篇
  1991年   4篇
  1990年   5篇
  1989年   6篇
  1988年   2篇
  1987年   2篇
  1986年   1篇
  1985年   2篇
  1984年   4篇
  1983年   2篇
  1982年   2篇
  1981年   2篇
  1980年   2篇
  1979年   2篇
  1978年   1篇
  1977年   2篇
  1976年   2篇
  1974年   1篇
  1973年   1篇
  1971年   1篇
排序方式: 共有210条查询结果,搜索用时 15 毫秒
71.
Little is known about the genetic and phenotypic diversity of Gram-positive denitrifying bacteria. We compared the production of gaseous denitrification products for 14 closely related Bacillus soil isolates at pH 6 and 7 during 48-h batch incubations using a robotic gas-sampling apparatus. Primers targeting the nosZ gene encoding the nitrous oxide reductase were designed to confirm the presence of this gene in the isolates. The variation in the production of gaseous nitrogen products was compared with the genetic variation based on 16S rRNA gene sequences, genomic fingerprinting and nosZ sequences. The nosZ gene was detected in all isolates and all produced N(2) as the dominant end product at pH 7. Production of gaseous nitrogen products was more variable at pH 6, with different levels of NO and N(2) O production among the isolates, although minimal variation was observed among the 16S rRNA and nosZ gene sequences. One isolate was more divergent from the others based on genomic fingerprinting, and had two different nosZ gene copies, which coincided with the highest production of N(2) at pH 7 and the lack of intermediates at pH 6. Overall, our analysis suggests that genetic variation plays a role in the variation in N(2) O and N(2) production, but the variation in activity caused by acidification can be substantially greater than genotypic variation among closely related Bacillus.  相似文献   
72.
We investigated the neuroendocrine changes involved in the transition from incubating eggs to brooding of the young in turkeys. Numbers of mesotocin (MT; the avian analog of mammalian oxytocin) immunoreactive (ir) neurons were higher in the nucleus paraventricularis magnocellularis (PVN) and nucleus supraopticus, pars ventralis (SOv) of late stage incubating hens compared to the layers. When incubating and laying hens were presented with poults, all incubating hens displayed brooding behavior. c-fos mRNA expression was found in several brain areas in brooding hens. The majority of c-fos mRNA expression by MT-ir neurons was observed in the PVN and SOv while the majority of c-fos mRNA expression in dopaminergic (DAergic) neurons was observed in the ventral part of the nucleus preopticus medialis (POM). Following intracerebroventricular injection of DA or oxytocin (OT) receptor antagonists, hens incubating eggs were introduced to poults. Over 80% of those injected with vehicle or the D1 DA receptor antagonist brooded poults, while over 80% of those receiving the D2 DA receptor antagonist or the OT receptor antagonist failed to brood the poults. The D2 DA/OT antagonist groups also displayed less c-fos mRNA in the dorsal part of POM and the medial part of the bed nucleus of the stria terminalis (BSTM) areas than did the D1 DA/vehicle groups. These data indicate that numerous brain areas are activated when incubating hens initially transition to poult brooding behavior. They also indicate that DAergic, through its D2 receptor, and MTergic systems may play a role in regulating brooding behaviors in birds.  相似文献   
73.
Ducklings reared by a hen swim with dry plumage a day or two after hatching, while incubator-hatched ducklings of the same age may sink and even drown when placed in water. The common interpretation is that wild-reared chicks receive preen oil from the parent, and this oil makes them more waterproof. Using mallard ducklings Anas platyrhynchos we tested the effect of preen and other oils, as well as hydrophilic or surfactant contaminants, on the water resistance of down. We found that the true cause for the difference between incubator and hen-reared ducklings is the presence of hydrophilic hatching fluid residues in the down of incubator-hatched ducklings. Once well rinsed and dried, incubator-hatched ducklings can swim for over an hour with essentially dry down. Other tests showed that clean down is quite water resistant, and that water resistance was not improved by preen or other oils. Small amounts of preen or other oils had no effect on water repellency or wetting during surface swimming. However, oil decreased the hydraulic pressure needed to penetrate down. Down lacks the stabilizing interlocking structure of adult contour feathers, and small amounts of oil apparently cause barbules to stick together and reduce the effective number of down fibers. Detergent decreases water repellency and increases water retention, and has a more severe effect on oiled down or when applied in combination with oil. The penetration pressure of a clean down coat, 866±154 Pa, could allow static immersion to ca. 8cm before water would saturate the down and increase thermal conductance. Thus, clean ducklings have a 2×–3× safety margin for surface swimming. Saturation increases the thermal conductance of the down coat from 14.3±1.38 W/m2-°C to 193±25 W/m2-°C. Thus, water pollution or down contamination causing wetting can significantly increase energy use and the frequency of hypothermia.  相似文献   
74.
To better understand the role of human equilibrative (hENTs) and concentrative (hCNTs) nucleoside transporters in physiology and pharmacology, we investigated the regional, cellular, and spatial distribution of two hCNTs (hCNT1 and hCNT2) and two hENTs (hENT1 and hENT2) in four human tissues. Using in situ hybridization and immunohistochemical techniques, we found that the duodenum expressed hCNT1 and hCNT2 mRNAs in enterocytes and hENT1 and hENT2 mRNAs in crypt cells. In these cells, the hCNT and hENT proteins were predominantly localized in the apical and lateral membrane, respectively. Hepatocytes expressed higher levels of mRNAs of hENT1, hCNT1, and hENT2 than of hCNT2 and expressed all these proteins at hepatocyte cell borders and in the cytoplasm. While the kidney expressed hCNT1 and hCNT2 mRNAs in the proximal tubules, hENT1 and hENT2 mRNAs were present in the distal tubules, glomeruli, endothelial cells, and vascular smooth muscle cells. Proximal tubules adjacent to corticomedullary junctions expressed hENT1, hCNT1, and hCNT2 mRNA. Immunolocalization studies revealed predominant localization of hCNTs in the brush-border membrane of the proximal tubular epithelial cells and hENTs in the basolateral membrane of the distal tubular epithelial cells. Chorionic villi sections of human term placenta expressed mRNAs and proteins for hENT1 and hENT2 but only mRNA for hCNT2. Immunolocalization studies showed presence of hENT1 in the brush-border membrane of the syncytiotrophoblasts. These data are critical for a better understanding of the role of nucleoside transporters in the physiological and pharmacological effects of nucleosides and nucleoside drugs, respectively.  相似文献   
75.
Plant secondary metabolites (SMs) are pervasive in animal foods and potentially influence feeding behavior, interspecies interactions, and the distribution and abundance of animals. Some of the major classes of naturally occurring SMs in plants include many water-soluble compounds in the molecular size range that could cross the intestinal epithelium via the paracellular space by diffusion or solvent drag. There are differences among species in paracellular permeability. Using Middle Eastern rodent and avian consumers of fruits containing SMs, we tested the hypothesis that avian species would have significantly higher paracellular permeability than rodent species. Permeability in intact animals was assessed using standard pharmacological methodology to measure absorption of two radiolabeled, inert, neutral water-soluble probes that do not interact with intestinal nutrient transporters, L-arabinose (Mr = 150.1 Da) and lactulose (Mr = 342.3 Da). We also measured absorption of labeled 3-O-methyl-D-glucose (3OMD-glucose; Mr = 194.2 Da), which is a nonmetabolized analogue of D-glucose that is passively absorbed through the paracellular space but also transported across the enterocyte membranes. Most glucose was absorbed by all species, but arabinose fractional absorption (f) was nearly three times higher in birds (1.03±0.17, n = 15 in two species) compared to rodents (0.37±0.06, n = 10 in two species) (P<0.001). Surprisingly, the apparent rates of absorption in birds of arabinose exceeded those of 3OMD-glucose. Our findings are in agreement with previous work showing that the paracellular pathway is more prominent in birds relative to nonflying mammals, and suggests that birds may be challenged by greater absorption of water-soluble, dietary SMs. The increased expression of the paracellular pathway in birds hints at a tradeoff: the free energy birds gain by absorbing water-soluble nutrients passively may be offset by the metabolic demands placed on them to eliminate concomitantly absorbed SMs.  相似文献   
76.
Denitrifying prokaryotes use NO(x) as terminal electron acceptors in response to oxygen depletion. The process emits a mixture of NO, N(2)O and N(2), depending on the relative activity of the enzymes catalysing the stepwise reduction of NO(3)(-) to N(2)O and finally to N(2). Cultured denitrifying prokaryotes show characteristic transient accumulation of NO(2)(-), NO and N(2)O during transition from oxic to anoxic respiration, when tested under standardized conditions, but this character appears unrelated to phylogeny. Thus, although the denitrifying community of soils may differ in their propensity to emit N(2)O, it may be difficult to predict such characteristics by analysis of the community composition. A common feature of strains tested in our laboratory is that the relative amounts of N(2)O produced (N(2)O/(N(2)+N(2)O) product ratio) is correlated with acidity, apparently owing to interference with the assembly of the enzyme N(2)O reductase. The same phenomenon was demonstrated for soils and microbial communities extracted from soils. Liming could be a way to reduce N(2)O emissions, but needs verification by field experiments. More sophisticated ways to reduce emissions may emerge in the future as we learn more about the regulation of denitrification at the cellular level.  相似文献   
77.
The functional robustness of biofilms in a wastewater nitrification reactor, and the gene pools therein, were investigated. Nitrosomonas and Nitrosospira spp. were present in similar amounts (cloning-sequencing of ammonia-oxidizing bacteria 16S rRNA gene), and their estimated abundance (1.1 x 10(9) cells g(-1) carrier material, based on amoA gene real-time PCR) was sufficient to explain the observed nitrification rates. The biofilm also had a diverse community of heterotrophic denitrifying bacteria (cloning-sequencing of nirK). Anammox 16S rRNA genes were detected, but not archaeal amoA. Dispersed biofilms (DB) and intact biofilms (IB) were incubated in gas-tight reactors at different pH levels (4.5 and 5.5 vs. 6.5) while monitoring O(2) depletion and concentrations of NO, N(2)O and N(2) in the headspace. Nitrification was severely reduced by suboptimal O(2) concentrations (10-100 microM) and low pH (IB was more acid tolerant than DB), but the N(2)O/NO(3)(-) product ratio of nitrification remained low (<10(-3)). The NO(2)(-) concentrations during nitrification were generally 10 times higher in DB than in IB. Transient NO and N(2)O accumulation at the onset of denitrification was 10-10(3) times higher in DB than in IB (depending on the pH). The contrasting performance of DB and IB suggests that the biofilm structure, with anoxic/micro-oxic zones, helps to stabilize functions during anoxic spells and low pH.  相似文献   
78.
The oxygen control of denitrification and its emission of NO/N2O/N2 was investigated by incubation of Nycodenz-extracted soil bacteria in an incubation robot which monitors O2, NO, N2O and N2 concentrations (in He+O2 atmosphere). Two consecutive incubations were undertaken to determine (1) the regulation of denitrification by O2 and NO2(-) during respiratory O2 depletion and (2) the effects of re-exposure to O2 of cultures with fully expressed denitrification proteome. Early denitrification was only detected (as NO and N2O) at 相似文献   
79.
80.
Ammonia-oxidizing bacteria (AOB) are thought to contribute significantly to N2O production and methane oxidation in soils. Most of our knowledge derives from experiments with Nitrosomonas europaea, which appears to be of minor importance in most soils compared to Nitrosospira spp. We have conducted a comparative study of levels of aerobic N2O production in six phylogenetically different Nitrosospira strains newly isolated from soils and in two N. europaea and Nitrosospira multiformis type strains. The fraction of oxidized ammonium released as N2O during aerobic growth was remarkably constant (0.07 to 0.1%) for all the Nitrosospira strains, irrespective of the substrate supply (urea versus ammonium), the pH, or substrate limitation. N. europaea and Nitrosospira multiformis released similar fractions of N2O when they were supplied with ample amounts of substrates, but the fractions rose sharply (to 1 to 5%) when they were restricted by a low pH or substrate limitation. Phosphate buffer (versus HEPES) doubled the N2O release for all types of AOB. No detectable oxidation of atmospheric methane was detected. Calculations based on detection limits as well as data in the literature on CH4 oxidation by AOB bacteria prove that none of the tested strains contribute significantly to the oxidation of atmospheric CH4 in soils.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号