首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   38篇
  免费   2篇
  2021年   1篇
  2018年   2篇
  2016年   1篇
  2015年   3篇
  2013年   2篇
  2012年   1篇
  2011年   6篇
  2010年   1篇
  2009年   2篇
  2008年   2篇
  2007年   1篇
  2005年   1篇
  2004年   4篇
  2003年   3篇
  2002年   1篇
  2001年   3篇
  2000年   4篇
  1999年   2篇
排序方式: 共有40条查询结果,搜索用时 31 毫秒
11.
12.
This paper provides a review of current metrological capability applied to the characterisation of the acoustic output of equipment used within medical ultrasonic applications. Key measurement devices, developed to underpin metrology in this area, are the radiation force balance, used to determine total output power, and the piezo-electric hydrophone, used to resolve the spatial and temporal distribution of acoustic pressure. The measurement infrastructure in place within the United Kingdom ensuring users are able to carry out traceable measurements of these quantities in a meaningful way, is described. This includes the relevant primary standards, the way international equivalence of national standards is demonstrated and the routes by which the standards are disseminated to the user community. Emerging measurement techniques that may in future lead to improved measurement capability, are also briefly discussed.  相似文献   
13.
Administration of low doses of Escherichia coli endotoxin [a lipopolysaccharide (LPS)] to humans enables the study of inflammatory mechanisms. The purpose of the present study was to investigate whether the blue-field entoptic technique may be used to quantify the increase in circulating leukocytes in the ocular microvasculature after LPS infusion. In addition, combined laser Doppler velocimetry and retinal vessel size measurement were used to study red blood cell movement. Twelve healthy male volunteers received 20 IU/kg iv LPS as a bolus infusion. Outcome parameters were measured at baseline and 4 h after LPS administration. In the first protocol (n = 6 subjects), ocular hemodynamic effects were assessed with the blue-field entoptic technique, the retinal vessel analyzer, and laser Doppler velocimetry. In the second protocol (n = 6 subjects), white blood cell (WBC) counts from peripheral blood samples and blue-field entoptic technique measurements were performed. LPS caused peripheral blood leukocytosis and increased WBC density in ocular microvessels (by 49%; P = 0.036) but did not change WBC velocity. In addition, retinal venous diameter was increased (by 9%; P = 0.008), but red blood cell velocity remained unchanged. The LPS-induced changes in retinal WBC density and leukocyte counts were significantly correlated (r = 0.87). The present study indicates that the blue-field entoptic technique can be used to assess microvascular leukocyte recruitment in vivo. In addition, our data indicate retinal venous dilation in response to endotoxin.  相似文献   
14.
A method using gas chromatography-mass spectrometry (GC-MS) and solid-phase extraction (SPE) was developed for the determination of ajulemic acid (AJA), a non-psychoactive synthetic cannabinoid with interesting therapeutic potential, in human plasma. When using two calibration graphs, the assay linearity ranged from 10 to 750 ng/ml, and 750 to 3000 ng/ml AJA. The intra- and inter-day precision (R.S.D., %), assessed across the linear ranges of the assay, was between 1.5 and 7.0, and 3.6 and 7.9, respectively. The limit of quantitation (LOQ) was 10 ng/ml. The amount of AJA glucuronide was determined by calculating the difference in the AJA concentration before ("free AJA") and after enzymatic hydrolysis ("total AJA"). The present method was used within a clinical study on 21 patients suffering from neuropathic pain with hyperalgesia and allodynia. For example, plasma levels of 599.4+/-37.2 ng/ml (mean+/-R.S.D., n=9) AJA were obtained for samples taken 2 h after the administration of an oral dose of 20 mg AJA. The mean AJA glucuronide concentration at 2h was 63.8+/-127.9 ng/ml.  相似文献   
15.
16.

Purpose

To develop a robust T magnetic resonance imaging (MRI) sequence for assessment of myocardial disease in humans.

Materials and Methods

We developed a breath-held T mapping method using a single-shot, T-prepared balanced steady-state free-precession (bSSFP) sequence. The magnetization trajectory was simulated to identify sources of T error. To limit motion artifacts, an optical flow-based image registration method was used to align T images. The reproducibility and accuracy of these methods was assessed in phantoms and 10 healthy subjects. Results are shown in 1 patient with pre-ventricular contractions (PVCs), 1 patient with chronic myocardial infarction (MI) and 2 patients with hypertrophic cardiomyopathy (HCM).

Results

In phantoms, the mean bias was 1.0 ± 2.7 msec (100 msec phantom) and 0.9 ± 0.9 msec (60 msec phantom) at 60 bpm and 2.2 ± 3.2 msec (100 msec) and 1.4 ± 0.9 msec (60 msec) at 80 bpm. The coefficient of variation (COV) was 2.2 (100 msec) and 1.3 (60 msec) at 60 bpm and 2.6 (100 msec) and 1.4 (60 msec) at 80 bpm. Motion correction improved the alignment of T images in subjects, as determined by the increase in Dice Score Coefficient (DSC) from 0.76 to 0.88. T reproducibility was high (COV < 0.05, intra-class correlation coefficient (ICC) = 0.85–0.97). Mean myocardial T value in healthy subjects was 63.5 ± 4.6 msec. There was good correspondence between late-gadolinium enhanced (LGE) MRI and increased T relaxation times in patients.

Conclusion

Single-shot, motion corrected, spin echo, spin lock MRI permits 2D T mapping in a breath-hold with good accuracy and precision.  相似文献   
17.
Malaria is a major global health problem. Pregnant women are susceptible to infection regardless of previously acquired immunity. Placental malaria is caused by parasites capable of sequestering in the placenta. This is mediated by VAR2CSA, a parasite antigen that interacts with chondroitin sulfate A (CSA). One vaccine strategy is to block this interaction with VAR2CSA-specific antibodies. It is a priority to define a small VAR2CSA fragment that can be used in an adhesion blocking vaccine. In this, the obvious approach is to define regions of VAR2CSA involved in receptor binding. It has been shown that full-length recombinant VAR2CSA binds specifically to CSA with nanomolar affinity, and that the CSA-binding site lies in the N-terminal part of the protein. In this study we define the minimal binding region by truncating VAR2CSA and analyzing CSA binding using biosensor technology. We show that the core CSA-binding site lies within the DBL2X domain and parts of the flanking interdomain regions. This is in contrast to the idea that single domains do not possess the structural requirements for specific CSA binding. Small-angle x-ray scattering measurements enabled modeling of VAR2CSA and showed that the CSA-binding DBL2X domain is situated in the center of the structure. Mutating classic sulfate-binding sites in VAR2CSA, along with testing dependence of ionic interactions, suggest that the CSA binding is not solely dependent on the sulfated CSA structure. Based on these novel PfEMP1 structure-function studies, we have constructed a small VAR2CSA antigen that has the capacity to induce highly adhesion-blocking antibodies.  相似文献   
18.
19.
Inflammation has been proposed to impair HDL function and reverse cholesterol transport (RCT). We investigated the effects of inflammation mediated by zymosan, a yeast glucan, on multiple steps along the RCT pathway in vivo and ex vivo. Acute inflammation with 70 mg/kg zymosan impaired RCT to plasma, liver, and feces similarly by 17-22% (P < 0.05), with no additional block at the liver. Hepatic gene expression further demonstrated no change in ABCG5, ABCB4, and ABCB11 expression but a decline in ABCG8 mRNA (32% P < 0.05). Plasma from zymosan-treated mice had a 21% decrease in cholesterol acceptor ability (P < 0.01) and a 35% decrease in ABCA1-specific efflux capacity (P < 0.01) in vitro. Zymosan treatment also decreased HDL levels and led to HDL remodeling with increased incorporation of serum amyloid A. In addition, cholesterol efflux from cultured macrophages declined with zymosan treatment in a dose dependent manner. Taken together, our results suggest that zymosan impairs in vivo RCT primarily by decreasing macrophage-derived cholesterol entering the plasma, with minimal additional blocks downstream. Our study supports the notion that RCT impairment is one of the mechanisms for the increased atherosclerotic burden observed in inflammatory conditions.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号