首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   142篇
  免费   9篇
  2023年   1篇
  2022年   1篇
  2021年   2篇
  2020年   1篇
  2019年   2篇
  2018年   1篇
  2017年   1篇
  2016年   2篇
  2015年   5篇
  2014年   7篇
  2013年   6篇
  2012年   6篇
  2011年   8篇
  2010年   5篇
  2009年   7篇
  2008年   8篇
  2007年   5篇
  2006年   8篇
  2005年   9篇
  2004年   9篇
  2003年   4篇
  2002年   3篇
  2001年   8篇
  2000年   2篇
  1999年   4篇
  1998年   2篇
  1997年   1篇
  1996年   2篇
  1995年   2篇
  1994年   1篇
  1993年   1篇
  1991年   2篇
  1990年   1篇
  1986年   2篇
  1985年   4篇
  1984年   1篇
  1982年   1篇
  1979年   1篇
  1975年   2篇
  1974年   1篇
  1973年   2篇
  1972年   1篇
  1971年   1篇
  1969年   2篇
  1942年   1篇
  1924年   1篇
  1919年   1篇
  1918年   1篇
  1907年   2篇
排序方式: 共有151条查询结果,搜索用时 31 毫秒
131.
Eriogonum ovalifolium var. williamsiae (Steamboat buckwheat) is a narrow endemic subshrub, known from a single locality in Washoe County, Nevada. We examined genetic structure of the only known population by analyzing patterns of allozyme variation. Our results suggest that Steamboat buckwheat has high genetic variability, with levels of variation similar to that typical of a widespread species rather than a narrow endemic. Genotype frequencies suggest that mating is random. We detected no genetic subdivision of the population. Several clones spanning up to 67 cm were found, but we do not know if such clones are common. We used allozyme data to assess the genetic similarity of var. williamsiae to five other varieties of E. ovalifolium. All six varieties are very similar allozymically with var. williamsiae being the most similar to the widespread var. ovalifolium. Although var. williamsiae and var. ovalifolium are morphologically distinct, their genetic similarity warrants further study to determine whether or not they should be treated as separate taxa. Evidence of male sterility in var. williamsiae plus other data leads us to hypothesize that this taxon might be either a hybrid or undergoing cytoplasmic introgression. Information gathered from this study, in concert with ongoing work on the breeding system of Steamboat buckwheat, should be helpful in forming management strategies for this plant.  相似文献   
132.
133.
The Escherichia coli isolate CT596 excludes infection by the Myoviridae T4 ip1(-) phage that lacks the encapsidated IPI* protein normally injected into the host with the phage DNA. Screening of a CT596 genomic library identified adjacent genes responsible for this exclusion, gmrS (942 bp) and gmrD (708 bp) that are encoded by a cryptic prophage DNA. The two genes are necessary and sufficient to confer upon a host the ability to exclude infection by T4 ip1(-) phage and other glucosyl-hydroxymethylcytosine (glc-HMC) Tevens lacking the ip1 gene, yet allow infection by phages with non-glucoslyated cytosine (C) DNA that lack the ip1 gene. A plasmid expressing the ip1 gene product, IPI*, allows growth of Tevens lacking ip1 on E. coli strains carrying the cloned gmrS/gmrD genes. Members of the Teven family carry a diverse and, in some cases, expanded set of ip1 locus genes. In vivo analysis suggests a family of gmr genes that specifically target sugar-HMC modified DNA have evolved to exclude Teven phages, and these exclusion genes have in turn been countered by a family of injected exclusion inhibitors that likely help determine the host range of different glc-HMC phages.  相似文献   
134.
Congenital heart defects (CHD) are the most common cause of death in children under the age of 1. Tetralogy of Fallot (TOF) is a severe CHD that results from developmental defects in the conotruncal outflow tract. Recently, a tissue-specific gene expression template (GET) was derived from microarray data that accurately characterized multiple normal human tissues. We used the GET to examine spatial, temporal, and a pathological condition (TOF) within a single organ, the heart. The GET, as previously defined, generally identified temporal and spatial differences in the cardiac tissue. Differences in the stoichiometry of the GET reflected the severe developmental disturbance associated with TOF. Our analysis suggests that the homoeostatic equilibrium assessed by the GET at the inter-organ level is generally maintained at the intra-organ level as well.  相似文献   
135.
136.

Purpose/Objective(s)

To determine if intensity modulated radiation therapy (IMRT) in the post-operative setting for gastric cancer was associated with reduced toxicity compared to 3D conformal radiation therapy (3DCRT).

Materials/Methods

This retrospective study includes 24 patients with stage IB-IIIB gastric cancer consecutively treated from 2001–2010. All underwent surgery followed by adjuvant chemoradiation. Concurrent chemotherapy consisted of 5-FU/leucovorin (n = 21), epirubicin/cisplatin/5FU (n = 1), or none (n = 2). IMRT was utilized in 12 patients and 3DCRT in 12 patients. For both groups, the target volume included the tumor bed, anastomosis, gastric stump, and regional lymphatics.

Results

Median follow-up for the entire cohort was 19 months (range 0.4–8.5 years), and 49 months (0.5–8.5 years) in surviving patients. The 3DCRT group received a median dose of 45 Gy, and the IMRT group received a median dose of 50.4 Gy (p = 0.0004). For the entire cohort, 3-year overall survival (OS) was 40% and 3-year disease free survival (DFS) was 41%. OS and DFS did not differ significantly between the groups. Acute toxicity was similar. Between 3DCRT and IMRT groups, during radiotherapy, median weight lost (3.2 vs. 3.3 kg, respectively; p = 0.47) and median percent weight loss were similar (5.0% vs. 4.3%, respectively; p = 0.43). Acute grade 2 toxicity was experienced by 8 patients receiving 3DCRT and 11 receiving IMRT (p = 0.32); acute grade 3 toxicity occurred in 1 patient receiving 3DCRT and none receiving IMRT (p = 1.0). No patients in either cohort experienced late grade 3 toxicity, including renal or gastrointestinal toxicity. At last follow up, the median increase in creatinine was 0.1 mg/dL in the IMRT group and 0.1 mg/dL in the 3DCRT group (p = 0.78).

Conclusion

This study demonstrates that adjuvant chemoradiation for gastric cancer with IMRT to 50.4 Gy was well-tolerated and compared similarly in toxicity with 3DCRT to 45 Gy.  相似文献   
137.
Inhibiting NAD biosynthesis by blocking the function of nicotinamide phosphoribosyl transferase (NAMPT) is an attractive therapeutic strategy for targeting tumor metabolism. However, the development of drug resistance commonly limits the efficacy of cancer therapeutics. This study identifies mutations in NAMPT that confer resistance to a novel NAMPT inhibitor, GNE-618, in cell culture and in vivo, thus demonstrating that the cytotoxicity of GNE-618 is on target. We determine the crystal structures of six NAMPT mutants in the apo form and in complex with various inhibitors and use cellular, biochemical and structural data to elucidate two resistance mechanisms. One is the surprising finding of allosteric modulation by mutation of residue Ser165, resulting in unwinding of an α-helix that binds the NAMPT substrate 5-phosphoribosyl-1-pyrophosphate (PRPP). The other mechanism is orthosteric blocking of inhibitor binding by mutations of Gly217. Furthermore, by evaluating a panel of diverse small molecule inhibitors, we unravel inhibitor structure activity relationships on the mutant enzymes. These results provide valuable insights into the design of next generation NAMPT inhibitors that offer improved therapeutic potential by evading certain mechanisms of resistance.  相似文献   
138.
Thrombin activation of protease-activated receptor-1 induces Ca(2+) influx through store-operated cation channel TRPC1 in endothelial cells. We examined the role of Ca(2+) influx induced by the depletion of Ca(2+) stores in signaling TRPC1 expression in endothelial cells. Both thrombin and a protease-activated receptor-1-specific agonist peptide induced TRPC1 expression in human umbilical vein endothelial cells, which was coupled to an augmented store-operated Ca(2+) influx and increase in endothelial permeability. To delineate the mechanisms of thrombin-induced TRPC1 expression, we transfected in endothelial cells TRPC1-promoter-luciferase (TRPC1-Pro-Luc) construct containing multiple nuclear factor-kappaB (NF-kappaB) binding sites. Co-expression of dominant negative IkappaBalpha mutant prevented the thrombin-induced increase in TRPC1 expression, indicating the key role of NF-kappaB activation in mediating the response. Using TRPC1 promoter-deletion mutant constructs, we showed that NF-kappaB binding sites located between -1623 and -871 in the TRPC1 5'-regulatory region were required for thrombin-induced TRPC1 expression. Electrophoretic mobility shift assay utilizing TRPC1 promoter-specific oligonucleotides identified that the DNA binding activities of NF-kappaB to NF-kappaB consensus sites were located in this domain. Supershift assays using NF-kappaB protein-specific antibodies demonstrated the binding of p65 homodimer to the TRPC1 promoter. Inhibition of store Ca(2+) depletion, buffering of intracellular Ca(2+), or down-regulation of protein kinase Calpha downstream of Ca(2+) influx all blocked thrombin-induced NF-kappaB activation and the resultant TRPC1 expression in endothelial cells. Thus, Ca(2+) influx via TRPC1 is a critical feed-forward pathway responsible for TRPC1 expression. The NF-kappaB-regulated TRPC1 expression may be an essential mechanism of vascular inflammation and, hence, a novel therapeutic target.  相似文献   
139.
140.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号