首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5305篇
  免费   414篇
  5719篇
  2022年   67篇
  2021年   122篇
  2020年   54篇
  2019年   77篇
  2018年   76篇
  2017年   70篇
  2016年   123篇
  2015年   217篇
  2014年   273篇
  2013年   284篇
  2012年   431篇
  2011年   400篇
  2010年   233篇
  2009年   213篇
  2008年   343篇
  2007年   303篇
  2006年   322篇
  2005年   273篇
  2004年   295篇
  2003年   267篇
  2002年   245篇
  2001年   49篇
  2000年   33篇
  1999年   50篇
  1998年   62篇
  1997年   51篇
  1996年   35篇
  1995年   50篇
  1994年   34篇
  1993年   22篇
  1992年   41篇
  1991年   42篇
  1990年   29篇
  1989年   26篇
  1988年   24篇
  1987年   24篇
  1986年   20篇
  1985年   34篇
  1984年   34篇
  1983年   28篇
  1982年   28篇
  1981年   37篇
  1980年   35篇
  1979年   21篇
  1978年   23篇
  1977年   23篇
  1976年   24篇
  1974年   23篇
  1973年   19篇
  1970年   16篇
排序方式: 共有5719条查询结果,搜索用时 15 毫秒
31.
Ectothermic animals exhibit two distinct kinds of plasticityin response to temperature: Thermal performance curves (TPCs),in which an individual's performance (e.g., growth rate) variesin response to current temperature; and developmental reactionnorms (DRNs), in which the trait value (e.g., adult body sizeor development time) of a genotype varies in response to developmentaltemperatures experienced over some time period during development.Here we explore patterns of genetic variation and selectionon TPCs and DRNs for insects in fluctuating thermal environments.First, we describe two statistical methods for partitioningtotal genetic variation into variation for overall size or performanceand variation in plasticity, and apply these methods to availabledatasets on DRNs and TPCs for insect growth and size. Our resultsindicate that for the datasets we considered, genetic variationin plasticity represents a larger proportion of the total geneticvariation in TPCs compared to DRNs, for the available datasets.Simulations suggest that estimates of the genetic variationin plasticity are strongly affected by the number and rangeof temperatures considered, and by the degree of nonlinearityin the TPC or DRN. Second, we review a recent analysis of fieldselection studies which indicates that directional selectionfavoring increased overall size is common in many systems—thatbigger is frequently fitter. Third, we use a recent theoreticalmodel to examine how selection on thermal performance curvesrelates to environmental temperatures during selection. Themodel predicts that if selection acts primarily on adult sizeor development time, then selection on thermal performance curvesfor larval growth or development rates is directly related tothe frequency distribution of temperatures experienced duringlarval development. Using data on caterpillar temperatures inthe field, we show that the strength of directional selectionon growth rate is predicted to be greater at the modal (mostfrequent) temperatures, not at the mean temperature or at temperaturesat which growth rate is maximized. Our results illustrate someof the differences in genetic architecture and patterns of selectionbetween thermal performance curves and developmental reactionnorms.  相似文献   
32.
The C terminus is responsible for all of the agonist activity of C5a at human C5a receptors (C5aRs). In this report we have mapped the ligand binding site on the C5aR using a series of agonist and antagonist peptide mimics of the C terminus of C5a as well as receptors mutated at putative interaction sites (Ile(116), Arg(175,) Arg(206), Glu(199), Asp(282), and Val(286)). Agonist peptide 1 (Phe-Lys-Pro-d-cyclohexylalanine-cyclohexylalanine-d-Arg) can be converted to an antagonist by substituting the bulkier Trp for cyclohexylalanine at position 5 (peptide 2). Conversely, mutation of C5aR transmembrane residue Ile(116) to the smaller Ala (I116A) makes the receptor respond to peptide 2 as an agonist (Gerber, B. O., Meng, E. C., Dotsch, V., Baranski, T. J., and Bourne, H. R. (2001) J. Biol. Chem. 276, 3394-3400). However, a potent cyclic hexapeptide antagonist, Phe-cyclo-[Orn-Pro-d-cyclohexylalanine-Trp-Arg] (peptide 3), derived from peptide 2 and which binds to the same receptor site, remains a full antagonist at I116AC5aR. This suggests that although the residue at position 5 might bind near to Ile(116), the latter is not essential for either activation or antagonism. Arg(206) and Arg(175) both appear to interact with the C-terminal carboxylate of C5a agonist peptides, suggesting a dynamic binding mechanism that may be a part of a receptor activation switch. Asp(282) has been previously shown to interact with the side chain of the C-terminal Arg residue, and Glu(199) may also interact with this side chain in both C5a and peptide mimics. Using these interactions to orient NMR-derived ligand structures in the binding site of C5aR, a new model of the interaction between peptide antagonists and the C5aR is presented.  相似文献   
33.
Ultraconserved elements in the human genome likely harbor important biological functions as they are dosage sensitive and are able to direct tissue-specific expression. Because they are under purifying selection, variants in these elements may have a lower frequency in the population but a higher likelihood of association with complex traits. We tested a set of highly constrained SNPs (hcSNPs) distributed genome-wide among ultraconserved and nearly ultraconserved elements for association with seven traits related to reproductive (age at natural menopause, number of children, age at first child, and age at last child) and overall [longevity, body mass index (BMI), and height] fitness. Using up to 24,047 European-American samples from the National Heart, Lung, and Blood Institute Candidate Gene Association Resource (CARe), we observed an excess of associations with BMI and height. In an independent replication panel the most strongly associated SNPs showed an 8.4-fold enrichment of associations at the nominal level, including three variants in previously identified loci and one in a locus (DENND1A) previously shown to be associated with polycystic ovary syndrome. Finally, using 1430 family trios, we showed that the transmissions from heterozygous parents to offspring of the derived alleles of rare (frequency ≤0.5%) hcSNPs are not biased, particularly after adjusting for the rates of genotype missingness and error in the data. The lack of transmission bias ruled out an immediately and strongly deleterious effect due to the rare derived alleles, consistent with the observation that mice homozygous for the deletion of ultraconserved elements showed no overt phenotype. Our study also illustrated the importance of carefully modeling potential technical confounders when analyzing genotype data of rare variants.  相似文献   
34.
35.

Background

Six independent studies have identified linkage to chromosome 18 for developmental dyslexia or general reading ability. Until now, no candidate genes have been identified to explain this linkage. Here, we set out to identify the gene(s) conferring susceptibility by a two stage strategy of linkage and association analysis.

Methodology/Principal Findings

Linkage analysis: 264 UK families and 155 US families each containing at least one child diagnosed with dyslexia were genotyped with a dense set of microsatellite markers on chromosome 18. Association analysis: Using a discovery sample of 187 UK families, nearly 3000 SNPs were genotyped across the chromosome 18 dyslexia susceptibility candidate region. Following association analysis, the top ranking SNPs were then genotyped in the remaining samples. The linkage analysis revealed a broad signal that spans approximately 40 Mb from 18p11.2 to 18q12.2. Following the association analysis and subsequent replication attempts, we observed consistent association with the same SNPs in three genes; melanocortin 5 receptor (MC5R), dymeclin (DYM) and neural precursor cell expressed, developmentally down-regulated 4-like (NEDD4L).

Conclusions

Along with already published biological evidence, MC5R, DYM and NEDD4L make attractive candidates for dyslexia susceptibility genes. However, further replication and functional studies are still required.  相似文献   
36.
As surface temperatures are expected to rise in the future, ice‐rich permafrost may thaw, altering soil topography and hydrology and creating a mosaic of wet and dry soil surfaces in the Arctic. Arctic wetlands are large sources of CH4, and investigating effects of soil hydrology on CH4 fluxes is of great importance for predicting ecosystem feedback in response to climate change. In this study, we investigate how a decade‐long drying manipulation on an Arctic floodplain influences CH4‐associated microorganisms, soil thermal regimes, and plant communities. Moreover, we examine how these drainage‐induced changes may then modify CH4 fluxes in the growing and nongrowing seasons. This study shows that drainage substantially lowered the abundance of methanogens along with methanotrophic bacteria, which may have reduced CH4 cycling. Soil temperatures of the drained areas were lower in deep, anoxic soil layers (below 30 cm), but higher in oxic topsoil layers (0–15 cm) compared to the control wet areas. This pattern of soil temperatures may have reduced the rates of methanogenesis while elevating those of CH4 oxidation, thereby decreasing net CH4 fluxes. The abundance of Eriophorum angustifolium, an aerenchymatous plant species, diminished significantly in the drained areas. Due to this decrease, a higher fraction of CH4 was alternatively emitted to the atmosphere by diffusion, possibly increasing the potential for CH4 oxidation and leading to a decrease in net CH4 fluxes compared to a control site. Drainage lowered CH4 fluxes by a factor of 20 during the growing season, with postdrainage changes in microbial communities, soil temperatures, and plant communities also contributing to this reduction. In contrast, we observed CH4 emissions increased by 10% in the drained areas during the nongrowing season, although this difference was insignificant given the small magnitudes of fluxes. This study showed that long‐term drainage considerably reduced CH4 fluxes through modified ecosystem properties.  相似文献   
37.
Tec is the prototypic member of a family of intracellular tyrosine kinases that includes Txk, Bmx, Itk, and Btk. Tec family kinases share similarities in domain structure with Src family kinases, but one of the features that differentiates them is a proline-rich region (PRR) preceding their Src homology (SH) 3 domain. Evidence that the PRR of Itk can bind in an intramolecular fashion to its SH3 domain and the lack of a regulatory tyrosine in the C terminus indicates that Tec kinases must be regulated by a different set of intramolecular interactions to the Src kinases. We have determined the solution structure of the Tec SH3 domain and have investigated interactions with its PRR, which contains two SH3-binding sites. We demonstrate that in vitro, the Tec PRR can bind in an intramolecular fashion to the SH3. However, the affinity is lower than that for dimerization via reciprocal PRR-SH3 association. Using site-directed mutagenesis we show that both sites can bind the Tec SH3 domain; site 1 (155KTLPPAP161) binds intramolecularly, while site 2 (165KRRPPPPIPP174) cannot and binds in an intermolecular fashion. These distinct roles for the SH3 binding sites in Tec family kinases could be important for protein targeting and enzyme activation.  相似文献   
38.
We describe the first lipase structure from a thermophilic organism. It shares less than 20% amino acid sequence identity with other lipases for which there are crystal structures, and shows significant insertions compared with the typical alpha/beta hydrolase canonical fold. The structure contains a zinc-binding site which is unique among all lipases with known structures, and which may play a role in enhancing thermal stability. Zinc binding is mediated by two histidine and two aspartic acid residues. These residues are present in comparable positions in the sequences of certain lipases for which there is as yet no crystal structural information, such as those from Staphylococcal species and Arabidopsis thaliana. The structure of Bacillus stearothermophilus P1 lipase provides a template for other thermostable lipases, and offers insight into mechanisms used to enhance thermal stability which may be of commercial value in engineering lipases for industrial uses.  相似文献   
39.
This study aimed at measuring the influence of a low salt diet on the development of experimental atherosclerosis in moderately hyperlipidemic mice. Experiments were carried out on LDL receptor (LDLR) knockout (KO) mice, or apolipoprotein E (apoE) KO mice on a low sodium chloride diet (LSD) as compared with a normal salt diet (NSD). On LSD, the rise of the plasma concentrations of TG and nonesterified fatty acid (NEFA) was, respectively, 19% and 34% in LDLR KO mice, and 21% and 35% in apoE KO mice, and that of plasma cholesterol was limited to the LDLR KO group alone (15%). Probably due to the apoE KO severe hypercholesterolemia, the arterial inner-wall fat storage was not influenced by the diet salt content and was far more abundant in the apoE KO than in the LDLR KO mice. However, in the less severe hypercholesterolemia of the LDLR KO mice, lipid deposits on the LSD were greater than on the NSD. Arterial fat storage correlated with NEFA concentrations in the LDLR KO mice alone (n = 14, P = 0.0065). Thus, dietary sodium chloride restriction enhances aortic wall lipid storage in moderately hyperlipidemic mice.  相似文献   
40.
Baines JF  Harr B 《Genetics》2007,175(4):1911-1921
Contrasting patterns of X-linked vs. autosomal diversity may be indicative of the mode of selection operating in natural populations. A number of observations have shown reduced X-linked (or Z-linked) diversity relative to autosomal diversity in various organisms, suggesting a large impact of genetic hitchhiking. However, the relative contribution of other forces such as population bottlenecks, variation in reproductive success of the two sexes, and differential introgression remains unclear. Here, we survey 13 loci, 6 X-linked and 7 autosomal, in natural populations of the house mouse (Mus musculus) subspecies complex. We studied seven populations of three different subspecies, the eastern house mouse M. musculus castaneus, the central house mouse M. m. musculus, and the western house mouse M. m. domesticus, including putatively ancestral and derived populations for each. All populations display lower diversity on the X chromosomes relative to autosomes, and this effect is most pronounced in derived populations. To assess the role of demography, we fit the demographic parameters that gave the highest likelihood of the data using coalescent simulations. We find that the reduction in X-linked diversity is too large to be explained by a simple demographic model in at least two of four derived populations. These observations are also not likely to be explained by differences in reproductive success between males and females. They are consistent with a greater impact of positive selection on the X chromosome, and this is supported by the observation of an elevated K(A) and elevated K(A)/K(S) ratios on the rodent X chromosome. A second contribution may be that the X chromosome less readily introgresses across subspecies boundaries.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号