首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   384篇
  免费   55篇
  国内免费   1篇
  2020年   3篇
  2019年   5篇
  2018年   7篇
  2017年   6篇
  2016年   7篇
  2015年   8篇
  2014年   13篇
  2013年   12篇
  2012年   22篇
  2011年   19篇
  2010年   18篇
  2009年   20篇
  2008年   14篇
  2007年   10篇
  2006年   14篇
  2005年   15篇
  2004年   19篇
  2003年   9篇
  2002年   15篇
  2001年   13篇
  2000年   9篇
  1999年   18篇
  1998年   14篇
  1996年   5篇
  1995年   6篇
  1994年   6篇
  1993年   5篇
  1992年   5篇
  1991年   5篇
  1990年   10篇
  1989年   4篇
  1988年   8篇
  1985年   7篇
  1984年   7篇
  1982年   5篇
  1979年   5篇
  1977年   4篇
  1976年   6篇
  1975年   6篇
  1974年   4篇
  1973年   2篇
  1971年   3篇
  1970年   2篇
  1968年   4篇
  1967年   7篇
  1966年   4篇
  1964年   4篇
  1963年   3篇
  1954年   2篇
  1932年   2篇
排序方式: 共有440条查询结果,搜索用时 15 毫秒
81.

Background  

Pseudomonas fluorescens is a ubiquitous Gram-negative bacterium frequently encountered in hospitals as a contaminant of injectable material and surfaces. This psychrotrophic bacterium, commonly described as unable to grow at temperatures above 32°C, is now considered non pathogenic. We studied a recently identified clinical strain of P. fluorescens biovar I, MFN1032, which is considered to cause human lung infection and can grow at 37°C in laboratory conditions.  相似文献   
82.
The involvement of the Nuclear distribution element-like (Ndel1; Nudel) protein in the recruitment of the dynein complex is critical for neurodevelopment and potentially important for neuronal disease states. The PDE4 family of phosphodiesterases specifically degrades cAMP, an important second messenger implicated in learning and memory functions. Here we show for the first time that Ndel1 can interact directly with PDE4 family members and that the interaction of Ndel1 with the PDE4D3 isoform is uniquely disrupted by elevation of intracellular cAMP levels. While all long PDE4 isoforms are subject to stimulatory PKA phosphorylation within their conserved regulatory UCR1 domain, specificity for release of PDE4D3 is conferred due to the PKA-dependent phosphorylation of Ser13 within the isoform-specific, unique amino-terminal domain of PDE4D3. Scanning peptide array analyses identify a common region on Ndel1 for PDE4 binding and an additional region that is unique to PDE4D3. The common site lies within the stutter region that links the second coiled-coil region to the unstable third coiled-coil regions of Ndel1. The additional binding region unique to PDE4D3 penetrates into the start of the third coiled-coil region that can undergo tail-to-tail interactions between Ndel1 dimers to form a 4 helix bundle. We demonstrate Ndel1 self-interaction in living cells using a BRET approach with luciferase- and GFP-tagged forms of Ndel1. BRET assessed Ndel1–Ndel1 self-interaction is amplified through the binding of PDE4 isoforms. For PDE4D3 this effect is ablated upon elevation of intracellular cAMP due to PKA-mediated phosphorylation at Ser13, while the potentiating effects of PDE4B1 and PDE4D5 are resistant to cAMP elevation. PDE4D long isoforms and Ndel1 show a similar sub-cellular distribution in hippocampus and cortex and locate to post-synaptic densities. We show that Ndel1 sequesters EPAC, but not PKA, in order to form a cAMP signalling complex. We propose that a key function of the Ndel1 signalling scaffold is to signal through cAMP by sequestering EPAC, whose activity may thus be specifically regulated by sequestered PDE4 that also stabilizes Ndel1–Ndel1 self-interaction. In the case of PDE4D3, its association with Ndel1 is dynamically regulated by PKA input through its ability to phosphorylate Ser13 in the unique N-terminal region of this isoform, triggering the specific release of PDE4D3 from Ndel1 when cAMP levels are elevated. We propose that Ser13 may act as a redistribution trigger in PDE4D3, allowing it to dynamically re-shape cAMP gradients in distinct intracellular locales upon its phosphorylation by PKA.  相似文献   
83.
Genomic rearrangements are widely used in Caenorhabditis elegans research but many remain incompletely characterized at the physical level. We have used oligo-array comparative genomic analysis to assess the physical structure of 20 deficiencies and a single duplication of chromosome V. We find that while deletions internal to the chromosome appear simple in structure, terminal deletions are complex, containing duplications in addition to the deletion. Additionally, we confirm that transposon-induced deficiencies contain breakpoints that initiate at Tc1 elements. Finally, 13 of these deficiencies are known to suppress recombination far beyond the extent of the deletion. These deficiencies fall into two classes: strong and weak suppressors of adjacent recombination. Analysis of the deleted regions in these deficiencies reveals no common physical sites to explain the observed differences in recombination suppression. However, we find a strong correlation between the size of the rearranged chromosome and the severity of recombination suppression. Rearranged chromosomes that have a minor effect on recombination fall within 2% of normal chromosome size. Our observations highlight the use of array-based approaches for the analysis of rearranged genomes, revealing previously unidentified deficiency characteristics and addressing biologically relevant questions.  相似文献   
84.
Mosquitoes, just as other insects produced for the sterile insect technique (SIT), are subjected to several unnatural processes including laboratory colonisation and large-scale factory production. After these processes, sterile male mosquitoes must perform the natural task of locating and mating with wild females. Therefore, the colonisation and production processes must preserve characters necessary for these functions. Fortunately, in contrast to natural selection which favours a suite of characteristics that improve overall fitness, colonisation and production practices for SIT strive to maximize only the few qualities that are necessary to effectively control populations.However, there is considerable uncertainty about some of the appropriate characteristics due to the lack of data. Development of biological products for other applications suggest that it is possible to identify and modify competitiveness characteristics in order to produce competitive mass produced sterile mosquitoes. This goal has been pursued - and sometimes achieved - by mosquito colonisation, production, and studies that have linked these characteristics to field performance. Parallels are drawn to studies in other insect SIT programmes and aquaculture which serve as vital technical reference points for mass-production of mosquitoes, most of whose development occurs - and characteristics of which are determined - in an aquatic environment. Poorly understood areas that require further study are numerous: diet, mass handling and genetic and physiological factors that influence mating competitiveness. Compromises in such traits due to demands to increase numbers or reduce costs, should be carefully considered in light of the desired field performance.  相似文献   
85.

Background

The spindle assembly checkpoint (SAC) delays anaphase onset by inhibiting the activity of the anaphase promoting complex/cyclosome (APC/C) until all of the kinetochores have properly attached to the spindle. The importance of SAC genes for genome stability is well established; however, the roles these genes play, during postembryonic development of a multicellular organism, remain largely unexplored.

Results

We have used GFP fusions of 5' upstream intergenic regulatory sequences to assay spatiotemporal expression patterns of eight conserved genes implicated in the spindle assembly checkpoint function in Caenorhabditis elegans. We have shown that regulatory sequences for all of the SAC genes drive ubiquitous GFP expression during early embryonic development. However, postembryonic spatial analysis revealed distinct, tissue-specific expression of SAC genes with striking co-expression in seam cells, as well as in the gut. Additionally, we show that the absence of MDF-2/Mad2 (one of the checkpoint genes) leads to aberrant number and alignment of seam cell nuclei, defects mainly attributed to abnormal postembryonic cell proliferation. Furthermore, we show that these defects are completely rescued by fzy-1(h1983)/CDC20, suggesting that regulation of the APC/CCDC20 by the SAC component MDF-2 is important for proper postembryonic cell proliferation.

Conclusion

Our results indicate that SAC genes display different tissue-specific expression patterns during postembryonic development in C. elegans with significant co-expression in hypodermal seam cells and gut cells, suggesting that these genes have distinct as well as overlapping roles in postembryonic development that may or may not be related to their established roles in mitosis. Furthermore, we provide evidence, by monitoring seam cell lineage, that one of the checkpoint genes is required for proper postembryonic cell proliferation. Importantly, our research provides the first evidence that postembryonic cell division is more sensitive to SAC loss, in particular MDF-2 loss, than embryonic cell division.  相似文献   
86.
Ribonuclease H2 (RNase H2) is the major nuclear enzyme involved in the degradation of RNA/DNA hybrids and removal of ribonucleotides misincorporated in genomic DNA. Mutations in each of the three RNase H2 subunits have been implicated in a human auto-inflammatory disorder, Aicardi-Goutières Syndrome (AGS). To understand how mutations impact on RNase H2 function we determined the crystal structure of the human heterotrimer. In doing so, we correct several key regions of the previously reported murine RNase H2 atomic model and provide biochemical validation for our structural model. Our results provide new insights into how the subunits are arranged to form an enzymatically active complex. In particular, we establish that the RNASEH2A C terminus is a eukaryotic adaptation for binding the two accessory subunits, with residues within it required for enzymatic activity. This C-terminal extension interacts with the RNASEH2C C terminus and both are necessary to form a stable, enzymatically active heterotrimer. Disease mutations cluster at this interface between all three subunits, destabilizing the complex and/or impairing enzyme activity. Altogether, we locate 25 out of 29 residues mutated in AGS patients, establishing a firm basis for future investigations into disease pathogenesis and function of the RNase H2 enzyme.  相似文献   
87.
A-kinase anchoring proteins (AKAPs) tether protein kinase A (PKA) and other signaling proteins to defined intracellular sites, thereby establishing compartmentalized cAMP signaling. AKAP-PKA interactions play key roles in various cellular processes, including the regulation of cardiac myocyte contractility. We discovered small molecules, 3,3'-diamino-4,4'-dihydroxydiphenylmethane (FMP-API-1) and its derivatives, which inhibit AKAP-PKA interactions in vitro and in cultured cardiac myocytes. The molecules bind to an allosteric site of regulatory subunits of PKA identifying a hitherto unrecognized region that controls AKAP-PKA interactions. FMP-API-1 also activates PKA. The net effect of FMP-API-1 is a selective interference with compartmentalized cAMP signaling. In cardiac myocytes, FMP-API-1 reveals a novel mechanism involved in terminating β-adrenoreceptor-induced cAMP synthesis. In addition, FMP-API-1 leads to an increase in contractility of cultured rat cardiac myocytes and intact hearts. Thus, FMP-API-1 represents not only a novel means to study compartmentalized cAMP/PKA signaling but, due to its effects on cardiac myocytes and intact hearts, provides the basis for a new concept in the treatment of chronic heart failure.  相似文献   
88.
High-resolution crystal structures of AB5 toxins in their native form or in complex with a variety of ligands have led to the structure-based design and discovery of inhibitors targeting different areas of the toxins. The most significant progress is the development of highly potent multivalent ligands that block binding of the toxins to their receptors.  相似文献   
89.
90.
Bacillus anthracis is the causative organism of the disease anthrax. The ability of the organism to form resistant spores and infect via the aerosol route has led to it being considered as a potential biological warfare agent. The current available human vaccines are far from ideal, they are expensive to produce, require repeated doses and may invoke transient side-effects in some individuals. There is also evidence to suggest that they may not give full protection against all strains of B. anthracis. A new generation of anthrax vaccine is therefore needed. The use of Lactobacillus as a vector for expression of heterologous proteins from pathogens supplies us with a safe system, which can be given orally. Lactobacilli are commensals of the gut, generally regarded as safe and have intrinsic adjuvanticity. Oral vaccines may stimulate the mucosol immune system to produce local IgA responses in addition to systemic responses. These vectors are delivered at the mucosal surface, the site where the infection actually occurs and where the first line of defence lies. The gene encoding the protective antigen (PA) of B. anthracis, an immunogenic non-toxic component of the two toxins produced, is being cloned into different homologous vectors and subsequently transformed to various Lactobacillus strains. High intracellular expression levels for the PA in Lact. casei were achieved. Mucosal antigen presentation and humoral and cellular immune responses following immunization with transformants expressing PA in various ways (intracellular, surface-anchored and extracellular) are being studied.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号