首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3382篇
  免费   347篇
  国内免费   2篇
  2021年   62篇
  2020年   28篇
  2019年   33篇
  2018年   36篇
  2017年   27篇
  2016年   69篇
  2015年   88篇
  2014年   107篇
  2013年   129篇
  2012年   170篇
  2011年   151篇
  2010年   124篇
  2009年   101篇
  2008年   138篇
  2007年   114篇
  2006年   121篇
  2005年   111篇
  2004年   121篇
  2003年   93篇
  2002年   121篇
  2001年   83篇
  2000年   89篇
  1999年   88篇
  1998年   47篇
  1997年   47篇
  1996年   41篇
  1995年   39篇
  1994年   35篇
  1993年   42篇
  1992年   56篇
  1991年   60篇
  1990年   62篇
  1989年   62篇
  1988年   49篇
  1987年   51篇
  1986年   61篇
  1985年   62篇
  1984年   43篇
  1983年   31篇
  1982年   29篇
  1980年   41篇
  1979年   50篇
  1978年   33篇
  1977年   26篇
  1976年   33篇
  1975年   36篇
  1974年   30篇
  1973年   42篇
  1972年   35篇
  1970年   29篇
排序方式: 共有3731条查询结果,搜索用时 468 毫秒
131.
When CO2 is abruptly removed from the atmosphere surrounding an illuminated leaf, the primary electron-accepting plastoquinone of photosystem II (QA) (as measured by photochemical quenching, qp) is rapidly reduced and then, after some seconds, becomes more oxidized. The reoxidation of QA is accompanied by an increase in ΔpH (as measured by nonphotochemical quenching, qN) with kinetics consistent with a causal relationship. The fact that, in such circumstances, QA can become more oxidized in the absence of CO2 than in its presence indicates a diminished rate of reduction of QA, consequent upon impaired photosystem II efficacy. Dithiothreitol (DTT) feeding, which does not affect quantum yield or the maximum rate of photosynthesis, inhibits the reoxidation of QA but not the increase in the proton gradient. When leaves are reilluminated in high light following a dark interval of several minutes, DTT also abolishes the separation in time between the first maximum in qP and the first maximum in the rate of O2 evolution. It also diminishes subsequent oscillations. These results are held to demonstrate ΔpH control of photosystem II and are consistent with DTT inhibition of the xanthophyll cycle and hydrogen peroxide reduction. They support the concept that oxygen and hydrogen peroxide are involved, as Hill oxidants, in a pH-related manner, during oscillatory behavior.  相似文献   
132.
S W Bailey  S B Dillard  J E Ayling 《Biochemistry》1991,30(42):10226-10235
The chiral specificities of bovine striatal tyrosine hydroxylase (TH) (unphosphorylated and phosphorylated by cAMP-dependent protein kinase) and rat liver phenylalanine hydroxylase (PH) were examined at physiological pH using the pure C6 stereoisomers of 6-methyl- and 6-propyl-5,6,7,8-tetrahydropterin (6-methyl-PH4 and 6-propyl-PH4) and (6R)- and (6S)-tetrahydrobiopterin (BH4). Both PH and phosphorylated TH have substantially higher Vmax values with the unnatural (6R)-propyl-PH4 than the natural (6S)-propyl-PH4 (approximately 6- and 11-fold, respectively). However, the Km's are also higher such that Vmax/Km is almost unaffected by C6 chirality. Unphosphorylated TH has equal Km values for both isomers of 6-propyl-PH4, but has about a 6 times greater Vmax with the unnatural isomer, making it the fastest cofactor yet for this form of the enzyme. With the shorter 6-methyl group, chiral differences are still recognized by phosphorylated TH but hardly at all by PH. Inhibition of both PH and TH by amino acid substrate which occurs with (6R)-BH4 as cofactor is also observed with (6S)-propyl-PH4 but not with (6S)-BH4, (6R)-propyl-PH4, or (6R)- or (6R,S)-methyl-PH4. The Km for (6S)-BH4 with phosphorylated TH is nearly 3 times higher than with (6R)-BH4, but Vmax is unchanged. With unphosphorylated TH, (6S)-BH4 produces very low decelerating rates, which was shown not to be due to irreversible inactivation of the enzyme. The Km for (6R)-BH4 with either hydroxylase is 10 times higher than for the equivalently configured (6S)-propyl-PH4. Comparison of these two cofactors reveals that the 1' and 2' side-chain hydroxyl groups of the natural cofactor promote different regulatory functions in PH than in TH.  相似文献   
133.
The glucose metabolism of an Escherichia coli strain bearing mutations abolishing both acetyl phosphotransferase (PTA) and acetate kinase (ACK) activities was studied under aerobic and anaerobic conditions. These studies were conducted in a complex medium with the mutant carrying no plasmid, the mutant carrying the common cloning vector pUC19, and the mutant carrying a plasmid bearing the "pet" operon that encodes Zymomonas mobilis pyruvate decarboxylase and alcohol dehydrogenase activities. The mutant carrying no plasmid showed lower specific growth and glucose uptake rates relative to the parent wild-type strain (K-12), Lactic acid was produced at higher levels than the wild type, and considerable amounts of pyruvic acid were secreted as an unusual byproduct. Analysis of other fermentation products showed low but significant amounts of acetic acid, no accumulation of formic acid, and lower secretion of succinate and ethanol. The maintenance of the plasmid pUC19 in the mutant negatively affected metabolism. Expression of the pet operon overcame the metabolic stress caused by the plasmid, enhancing growth and glucose uptake rates to the values observed in the plasmidfree mutant. Also, expression of the pet operon allowed consumption of pyruvate accumulated during the first hours of fermentation.  相似文献   
134.
The effects of growth rate on cloned gene product synthesis in recombinant Saccharomyces cerevisiae have been studied in continuous culture. The plasmid employed contains a yeast GAL10-CYC1 hybrid promoter directing expression of the E. coli lacZ gene. beta-Galactosidase production was therefore controlled by the yeast galactose regulatory circuit, and the induction process and its effects were studied at the various dilution rates. At all dilution rates plasmid stability decreased with induction of lacZ gene expression. In some instances, two induced "steady states" were observed, the first 10-15 residence times after induction and the second after 40-50 residence times. The second induced steady state was characterized by greater biomass concentration and lower beta-galactosidase specific activity relative to the first induced "steady-state." beta-Galactosidase specific activity and biomass concentration increased as dilution rate was reduced, and despite lower flow rate and plasmid stability, overall productivity (activity/L/hr) was substantially higher at low dilution rate. Important factors influencing all of the trends were the glucose and galactose (inducer) concentrations in the vessel and inducer metabolism.  相似文献   
135.
An 8.4-kb genomic region spanning both the psi eta-globin gene locus and flanking DNA was sequenced from the common gibbon (Hylobates lar). In addition, sequencing of the entire orthologous region from galago (Galago crassicaudatus) was completed. The gibbon and galago sequences, along with published orthologous sequences from 10 other species, were aligned. These noncoding nucleotide sequences represented four human alleles, four apes (chimpanzee, gorilla, organgutan, and gibbon), an Old World monkey (rhesus monkey), two New World monkeys (spider and owl monkeys), tarsier, two strepsirhines (galago and lemur), and goat. Divergence and maximum parsimony analyses of the psi eta genomic region first groups humans and chimpanzees and then, at progressively more ancient branch points, successively joins gorillas, orangutans, gibbons, Old World monkeys, New World monkeys, tarsiers, and strepsirhines (the lemuriform-lorisiform branch of primates). This cladistic pattern supports the taxonomic grouping of all extant hominoids into family Hominidae, the division of Hominidae into subfamilies Hylobatinae (gibbons) and Homininae, the division of Homininae into tribes Pongini (orangutans) and Hominini, and the division of Hominini into subtribes Gorillina (gorillas) and Hominina (chimpanzees and humans). The additional gibbon and galago sequence data provide further support for the occurrence of a graded evolutionary-rate slowdown in the descent of simian primates, with the slowing rate being more pronounced in the great-ape and human lineages than in the gibbon or monkey lineages. A comparison of global versus local molecular clocks reveals that local clock predictions, when focused on a specific number of species within a narrow time frame, provide a more accurate estimate of divergence dates than do those of global clocks.  相似文献   
136.
The external anatomy of the auditory system of an undescribed zaprochiline tettigoniid (Genus nov. 22 Sp. 1, Australian National Insect Collection, Canberra) shows sexual dimorphism: the male appears to have no auditory spiracle equivalent to that seen in the female. Nocturnally active males aggregate around female required nectar sources in a random manner with regard to each other. There is limited evidence, either from song interaction or from their behavior in the field, that males respond to each other by acoustic cues. Laboratory trials, testing male phonotaxis, showed that movement was random with respect to a target group of caged calling males. In the field, the only signs of agonistic behavior consisted of an increased calling rate when males were close together. Taken together, these data suggest that the male may not preceive sound in the same way as the female.  相似文献   
137.
Summary Several clones of CHO cells, including recombinant cell lines expressing Hepatitis B surface antigen, were grown in macroporous collagen microspheres. These provided sufficient cell density in a packed bed recirculation system for phosphorus-31 nuclear magnetic resonance spectroscopic estimation of metabolite concentration. Intracellular nucleoside triphosphate as well as nucleoside tri- plus diphosphate levels were higher in the methotrexate-selected clones compared to the dhfr cell line.  相似文献   
138.
139.
The effects of NH(4)Cl addition on batch hybridoma cell growth at different external pH values (pH(e)) were investigated in a bioreactor at constant pH and dissolved oxygen concentration. In agreement with measurements in flasks, changes in pH(e) over the range 6.8-7.6 had minor effects on growth. Addition of 3 mM NH(4)Cl had little effect on cell growth while 10 mM NH(4)Cl caused a substantial growth inhibition, Measurements of the effects of pH(e) and NH(4)Cl concentration on cell metabolism gave similar results for cells grown in flasks in an incubator and in the bioreactor. As pH(e) decreases, the integral cell yield on glucose increases. There is a correlation between the effects of pH(e) on glycolysis and previous measurements of its effects on intracellular pH (pH(i)). Increases in NH(4)Cl concentration were previously determined to decrease pH(i) and are shown here to decrease the integral cell yield on glucose. At all pH(e) values in the absence of NH(4)Cl, glutamine is depleted at the time the maximum cell density is reached. Both pH(e) decreases and NH(4)Cl concentration increases lead to decreases in the integral cell yield on glutamine. Changes in pH(e) and in the NH(4)Cl concentration that cause growth inhibition have no effect on the specific antibody production rate for cells grown in flasks in an incubator or in the bioreactor. Changes in the NH(4)Cl concentration have no effect on the quality of the antibody produced, to a first level of characterization.  相似文献   
140.
Efficient expression of a foreign protein product by the yeastSaccharomyces cerevisiaerequires a stable recombinant vector present at a high number of copies per cell. A conditional centromere yeast plasmid was constructed which can be amplified to high copy number by a process of unequal partitioning at cell division, followed by selection for increased copy number. However, in the absence of selection pressure for plasmid amplification, copy number rapidly drops from 25 plasmids/cell to 6 plasmids/cell in less than 10 generations of growth. Copy number subsequently decreases from 6 plasmids/cell to 2 plasmids/cell over a span of 50 generations. A combination of flow cytometric measurement of copy number distributions and segregated mathematical modeling were applied to test the predictions of a conceptual model of conditional centromereplasmid propagation. Measured distributions of plasmid content displayed a significant subpopulation of cells with a copy number of 4-6, evenin a population whose mean copy number was 13.5. This type of copy number distribution was reproduced by a mathematical model which assumes that amaximum of 4-6 centromere plasmids per cell can be stably partitionedat cell division. The model also reproduces the observed biphasic kinetics of plasmid number instability. The agreement between simulation and experimental results provides support for the proposed model and demonstrates the utility of the flow cytometry/segregated modeling approach for the study of multicopy recombinant vector propagation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号