首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2840篇
  免费   209篇
  国内免费   206篇
  2024年   4篇
  2023年   42篇
  2022年   118篇
  2021年   192篇
  2020年   109篇
  2019年   129篇
  2018年   119篇
  2017年   115篇
  2016年   155篇
  2015年   196篇
  2014年   210篇
  2013年   246篇
  2012年   271篇
  2011年   244篇
  2010年   147篇
  2009年   119篇
  2008年   147篇
  2007年   113篇
  2006年   88篇
  2005年   69篇
  2004年   63篇
  2003年   48篇
  2002年   42篇
  2001年   32篇
  2000年   24篇
  1999年   29篇
  1998年   17篇
  1997年   20篇
  1996年   23篇
  1995年   12篇
  1994年   19篇
  1993年   9篇
  1992年   11篇
  1991年   11篇
  1990年   11篇
  1989年   8篇
  1988年   6篇
  1987年   3篇
  1986年   4篇
  1985年   6篇
  1984年   2篇
  1983年   3篇
  1981年   2篇
  1979年   3篇
  1978年   2篇
  1974年   1篇
  1973年   2篇
  1972年   1篇
  1971年   2篇
  1968年   3篇
排序方式: 共有3255条查询结果,搜索用时 154 毫秒
981.
Inhibiting allergic airway inflammation is the goal of therapy in persistent asthma. Administration of medication via the airways delivers drug directly to the site of inflammation and avoids systemic side effects but often fails to modulate systemic features of asthma. We have shown that Th1 cells, through production of IFN-γ, inhibit many Th2-induced effector functions that promote disease. Using a newly generated mouse that expresses IFN-γR only on airway epithelial cells, we show that the airway epithelium controls a range of pathological responses in asthma. IFN-γ acting only through the airway epithelium inhibits mucus, chitinases, and eosinophilia, independent of Th2 cell activation. IFN-γ signaling through the airway epithelium inhibits eosinophil generation in the bone marrow, indicating that signals on the airway mucosal surface can regulate distant functions to inhibit disease. IFN-γ actions through the airway epithelium will limit airway obstruction and inflammation and may be therapeutic in refractory asthma.  相似文献   
982.
Gao S  Shen S  Wang G  Niu J  Lin A  Pan G 《Plant & cell physiology》2011,52(5):885-893
Ulva sp. (Chlorophyta) is a representative species of the intertidal macro-algae responsible for the green tides that occurred along the shores of Qingdao in 2008 and had detrimental effects on the preparation for the 2008 Beijing Olympic Games sailing competition. In view of its significance, we have investigated the photosynthetic performance of the photosystems and the changes in photosynthetic electron transport that occur during desiccation and rehydration of Ulva sp. The PSII activity in Ulva sp. declined gradually during the course of desiccation, which was reflected by the decreased maximum quantum yield and effective quantum yield, whereas the PSI activity fluctuated significantly. In contrast, the electron transport rates of PSII approached zero at severe levels of desiccation, but the electron transport of PSI, which still operated, could be suppressed effectively by a specific inhibitor. Furthermore, the electron transport of PSI during rehydration of desiccated thalli was recovered faster than that of PSII. All these results implied that the linear electron flow was abolished in desiccated Ulva sp., whereas the cyclic PSI activity was significantly elevated, was still active at severe levels of desiccation and could be restored faster than PSII activity. Based on these results, we concluded the PSI-driven cyclic electron flow might provide desiccation tolerance and additional flexibility for the cell physiology of Ulva sp. under desiccation conditions, which might be one of the most important factors that make Ulva sp. well suited to experience daily cycles of desiccation at low tide and rehydration at high tide.  相似文献   
983.
Ang Li  Kechang Niu  Guozhen Du 《Plant and Soil》2011,344(1-2):177-186
Productivity of artificial grassland communities was investigated in a 6-year field experiment on the Qinghai-Tibetan Plateau. In the experiment, assemblages varying in seven species compositions and four density gradients were grown in fertilized and non-fertilized subplots. We measured biomass of sown species as an indicator of community productivity. In general, 6-years of experiments indicated that: (i) species composition had a significant influence on community productivity. During the initial phase of the experiment, sown density significantly affected community productivity, but the effects disappear with the increase of grown years. This productivity increased with biodiversity increase and fertilization, while the biodiversity effects disappeared when the influence of composition was removed. (ii) The increase of community productivity with biodiversity was resulted from joint effects of selection and complementarity. (iii) With an increase of growth time, the selection effects become weaker while complementarities become enhanced. Influence of density on both effects was significantly different in early stages, but ultimately this all became insignificant. Fertilization dramatically increased the complementarity effects in all experiment processes, but had different influences on selection effects during different experimental period.  相似文献   
984.
985.
Li H  Tong S  Li X  Shi H  Ying Z  Gao Y  Ge H  Niu L  Teng M 《Cell research》2011,21(7):1039-1051
The cleavage factor I(m) (CF I(m)), consists of a 25 kDa subunit (CF I(m)25) and one of three larger subunits (CF I(m)59, CF I(m)68, CF I(m)72), and is an essential protein complex for pre-mRNA 3'-end cleavage and polyadenylation. It recognizes the upstream sequence of the poly(A) site in a sequence-dependent manner. Here we report the crystal structure of human CF I(m), comprising CF I(m)25 and the RNA recognition motif domain of CF I(m)68 (CF I(m)68RRM), and the crystal structure of the CF I(m)-RNA complex. These structures show that two CF I(m)68RRM molecules bind to the CF I(m)25 dimer via a novel RRM-protein interaction mode forming a heterotetramer. The RNA-bound structure shows that two UGUAA RNA sequences, with anti-parallel orientation, bind to one CF I(m)25-CF I(m)68RRM heterotetramer, providing structural basis for the mechanism by which CF I(m) binds two UGUAA elements within one molecule of pre-mRNA simultaneously. Point mutation and kinetic analyses demonstrate that CF I(m)68RRM can bind the immediately flanking upstream region of the UGUAA element, and CF I(m)68RRM binding significantly increases the RNA-binding affinity of the complex, suggesting that CF I(m)68 makes an essential contribution to pre-mRNA binding.  相似文献   
986.
In animals with acute airway inflammation followed by repeated exposure to inhaled Ag, inflammation wanes over time and thus limits the study of chronic airway inflammatory diseases such as asthma. We developed a model of airway inflammation and inhalational exposure to investigate regulatory pathways in the respiratory tract. We show that Th1- and Th2-induced airway inflammation followed by repeated exposure to inhaled Ag leads to a state of immunosuppression. Challenge of these animals with a marked population of TCR transgenic effector Th1 or Th2 cells results in a striking inhibition of inflammation and effector Th cells. In Th2 models, airway hyperresponsiveness, mucus, and eosinophilia are reduced. The inhibitory effects observed are Ag nonspecific, can be induced in lymphocyte-deficient mice, and are associated with a population of TGF-beta1-expressing macrophages. Induction of this pathway may offer potent localized treatment of chronic T cell-mediated respiratory illnesses and provide insights into the development of such diseases.  相似文献   
987.
Introns were found to enhance almost every steps of gene expression except increasing mRNA stability. By analyzing the genome-wide data of mRNA stability published by someone previously, we found that human intron-containing genes have more stable mRNAs than intronless genes, and the Arabidopsis thaliana genes with the most unstable mRNAs have fewer introns than other genes in the genome. After controlling for mRNA length, we found mRNA stability is still positively correlated with intron number in human intron-containing genes. But in yeast Saccharomyces cerevisiae, two different datasets on mRNA half-life gave conflicting results. The components of messenger ribonucleoprotein particles recruited during intron splicing may be retained in cytoplasmic mRNPs and act as signals of mRNA stability or simply insulators to avoid mRNA degradation.  相似文献   
988.
We employed streptozotocin-induced diabetic rats (STZ-diabetic rats) as type 1 diabetes-like animal models to investigate the mechanism(s) of antihyperglycemic action produced by syringin, an active principle purified from the rhizome and root part S of ELEUTHEROCOCCUS SENTICOSUS (Araliaceae). Bolus intravenous (i. v.) injection of syringin dose-dependently decreased the plasma glucose of STZ-diabetic rats in 30 minutes in a way parallel to the increase of plasma beta-endorphin-like immunoreactivity (BER). Syringin enhanced BER release from the isolated adrenal medulla of STZ-diabetic rats in a concentration-dependent manner from 0.001 to 10 micromol/l. Bilateral adrenalectomy in STZ-diabetic rats eliminated the activities of syringin (1 mg/kg, i. v.) including the plasma glucose-lowering effect and the plasma BER-elevating effect. Also, syringin failed to lower plasma glucose in the presence of micro-opioid receptor antagonists and/or in the micro-opioid receptor knockout diabetic mice. In conclusion, the obtained results suggest that syringin can enhance the secretion of beta-endorphin from adrenal medulla to stimulate peripheral micro-opioid receptors resulting in a decrease of plasma glucose in diabetic rats lacking insulin.  相似文献   
989.
AMPA glutamate ion channels are tetrameric receptors in which activation to form the open channel depends on the binding of possibly multiple glutamate molecules. However, it is unclear whether AMPA receptors bound with a different number of glutamate molecules (i.e. one being the minimal and four being the maximal number of glutamate molecules) open the channels with different kinetic constants. Using a laser pulse photolysis technique that provides microsecond time resolution, we investigated the channel-opening kinetic mechanism of a nondesensitizing AMPA receptor, i.e. GluR1Q(flip) L497Y or a leucine-to-tyrosine substitution mutant, in the entire range of glutamate concentrations to ensure receptor saturation. We found that the minimal number of glutamate molecules required to bind to the receptor and to open the channel is two (or n = 2), and that the entire channel-opening kinetics can be adequately described by just one channel-opening rate constant, k(op), which correlates to n = 2. This result suggests that higher receptor occupancy (n = 3 and 4) does not give rise to different k(op) values or, at least, not appreciably if the k(op) values are different. Furthermore, compared with the wild-type receptor (Li, G., and Niu, L. (2004) J. Biol. Chem. 279, 3990-3997), the channel-opening and channel-closing rate constants of the mutant are 1.5- and 13-fold smaller, respectively. Thus, the major effect of this mutation is to decrease the channel-closing rate constant by stabilizing the open channel conformation.  相似文献   
990.
Oxaloacetate hydrolase, the C-C bond lyase of oxalate secreting fungi   总被引:1,自引:0,他引:1  
Oxalate secretion by fungi is known to be associated with fungal pathogenesis. In addition, oxalate toxicity is a concern for the commercial application of fungi in the food and drug industries. Although oxalate is generated through several different biochemical pathways, oxaloacetate acetylhydrolase (OAH)-catalyzed hydrolytic cleavage of oxaloacetate appears to be an especially important route. Below, we report the cloning of the Botrytis cinerea oahA gene and the demonstration that the disruption of this gene results in the loss of oxalate formation. In addition, through complementation we have shown that the intact B. cinerea oahA gene restores oxalate production in an Aspergillus niger mutant strain, lacking a functional oahA gene. These observations clearly indicate that oxalate production in A. niger and B. cinerea is solely dependent on the hydrolytic cleavage of oxaloacetate catalyzed by OAH. In addition, the B. cinera oahA gene was overexpressed in Escherichia coli and the purified OAH was used to define catalytic efficiency, substrate specificity, and metal ion activation. These results are reported along with the discovery of the mechanism-based, tight binding OAH inhibitor 3,3-difluorooxaloacetate (K(i) = 68 nM). Finally, we propose that cellular uptake of this inhibitor could reduce oxalate production.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号