首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5202篇
  免费   390篇
  国内免费   482篇
  6074篇
  2024年   9篇
  2023年   71篇
  2022年   173篇
  2021年   308篇
  2020年   205篇
  2019年   229篇
  2018年   250篇
  2017年   179篇
  2016年   232篇
  2015年   314篇
  2014年   390篇
  2013年   390篇
  2012年   481篇
  2011年   428篇
  2010年   274篇
  2009年   264篇
  2008年   275篇
  2007年   252篇
  2006年   194篇
  2005年   145篇
  2004年   161篇
  2003年   134篇
  2002年   91篇
  2001年   76篇
  2000年   78篇
  1999年   73篇
  1998年   43篇
  1997年   46篇
  1996年   46篇
  1995年   40篇
  1994年   29篇
  1993年   27篇
  1992年   26篇
  1991年   17篇
  1990年   17篇
  1989年   19篇
  1988年   8篇
  1987年   9篇
  1986年   9篇
  1985年   10篇
  1984年   6篇
  1983年   3篇
  1979年   8篇
  1975年   7篇
  1974年   4篇
  1971年   4篇
  1970年   4篇
  1969年   2篇
  1966年   3篇
  1965年   3篇
排序方式: 共有6074条查询结果,搜索用时 15 毫秒
91.
Variation in the stable N isotope ratio (δ15N) of plants and soils often reflects the influence of environment on the N cycle. We measured leaf δ15N and N concentration ([N]) on all individuals of Prosopis glandulosa (deciduous tree legume), Condalia hookeri (evergreen shrub), and Zanthoxylum fagara (evergreen shrub) present within a belt transect 308 m long × 12 m wide in a subtropical savanna ecosystem in southern Texas, USA in April and August 2005. Soil texture, gravimetric water content (GWC), total N and δ15N were also measured along the transect. At the landscape scale, leaf δ15N was negatively related to elevation for all the three species along this topoedaphic sequence. Changes in soil δ15N, total N, and GWC appeared to contribute to this spatial pattern of leaf δ15N. In lower portions of the landscape, greater soil N availability and GWC are associated with relatively high rates of both N mineralization and nitrification. Both soil δ15N and leaf [N] were positively correlated with leaf δ15N of non-N2 fixing plants. Leaf δ15N of P. glandulosa, an N2-fixing legume, did not correlate with leaf [N]; the δ15N of P. glandulosa’s leaves were closer to atmospheric N2 and significantly lower than those of C. hookeri and Z. fagara. Additionally, at smaller spatial scales, a proximity index (which reflected the density and distance of surrounding P. glandulosa trees) was negatively correlated with leaf δ15N of C. hookeri and Z. fagara, indicating the N2-fixing P. glandulosa may be important to the N nutrition of nearby non-N2-fixing species. Our results indicate plant 15N natural abundance can reflect the extent of N retention and help us better understand N dynamics and plant-soil interactions at ecosystem and landscape scales.  相似文献   
92.
The use of microorganisms in the synthesis of nanoparticles emerges as an eco-friendly and exciting approach. In this study, silver nanoparticles were successfully synthesized from AgNO3 by reduction of aqueous Ag+ ions with the cell filtrate of Rhodobacter sphaeroides. Nanoparticles were characterized by means of UV–vis absorption spectroscopy, X-Ray Diffraction (XRD), transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM). Crystalline nature of the nanoparticles in the fcc structure are confirmed by the peaks in the XRD pattern corresponding to (111), (200), (220) and (311) planes, bright circular spots in the selected are a electron diffraction (SAED) and clear lattice fringes in the high-resolution TEM image. Also, the size of silver nanoparticles was controlled by the specific activity of nitrate reductase in the cell filtrate.  相似文献   
93.
94.
Saline stress is a major factor that limits crop yield. Nitric oxide (NO) is functional during plant growth, development, and defense responses. In the present study, the protective role of NO in alleviating saline stress in maize at the physiological and proteomic levels was examined. Our results showed that salt treatment quickly induced NO accumulation and addition of the NO donor S-nitroso-N-acetylpenicillamine (SNAP) efficiently eliminated the inhibitory effect of salt on shoot growth and photosynthesis and inhibited salt-inducible H2O2 accumulation. These effects could be reversed by NO metabolic scavengers and inhibitors. Further proteomic and Western blotting analysis revealed that NO induced G-protein-associated protein accumulation and antioxidant enzymes activities, in addition to activation of defense proteins, energy metabolism, and cell structure/division in salt-treated maize seedlings. Controlling the G-protein status with G-protein activators or inhibitors also affected NO generation and root and stem growth in maize seedlings after saline stress. On the basis of these results, we propose that NO enhances salt tolerance in maize seedlings by enhancing antioxidant enzyme activities and controlling H2O2 levels, and these effects are accompanied by diverse downstream defense responses. During this process, G-protein signaling is an early event that works upstream of NO biogenesis.  相似文献   
95.
在胚胎发育的一定时期,表皮细胞呈现较强的β-内啡肽阳性免疫反应,而这时期正是表皮传导最活跃的时期。为了探索胚胎表皮传导和β-内啡肽-类阿片样多肽之间是否有关系,本实验采用纳络酮处理,发现表皮传导消失,待纳络酮作用消除后,表皮传导现象又再出现,说明纳络酮在胚胎表皮细胞传导中起了阻断的作用。  相似文献   
96.
Traditional methods for identifying food-borne pathogens are time-consuming and laborious, so it is necessary to develop innovative methods for the rapid identification of food-borne pathogens. Here, we report the development of silicon-based optical thin-film biosensor chips for sensitive detection of 11 food-borne pathogens. Briefly, aldehyde-labeled probes were arrayed and covalently attached to a hydrazine-derivatized chip surface, and then, biotinylated polymerase chain reaction (PCR) amplicons were hybridized with the probes. After washing and brief incubation with an antibiotin immunoglobulin G–horseradish peroxidase conjugate and a precipitable horseradish peroxidase substrate, biotinylated chains bound to the probes were visualized as a color change on the chip surface (gold to blue/purple). Highly sensitive and accurate examination of PCR fragment targets can be completed within 30 min. This assay is extremely robust, sensitive, specific, and economical and can be adapted to different throughputs. Thus, a rapid, sensitive, and reliable technique for detecting 11 food-borne pathogens was successfully developed.  相似文献   
97.

Key message

An increase in Ca 2+ concentration in the nucleus may activate the PCD of secretory cavity cells, and further Ca 2+ accumulation contributes to the regulation of nuclear DNA degradation.

Abstract

Calcium plays an important role in plant programmed cell death (PCD). Previously, we confirmed that PCD was involved in the degradation of secretory cavity cells in Citrus sinensis (L.) Osbeck fruits. To further explore the function of calcium in the PCD of secretory cavity cells, we used potassium pyroantimonate precipitation to detect and locate calcium dynamics. At the precursor cell stage of the secretory cavity, Ca2+ was only distributed in the cell walls. At the early stage of secretory cavity initial cells, Ca2+ in the cell walls was gradually transported into the cytoplasm via pinocytotic vesicles. Although a small amount of Ca2+ was present in the nucleus, the TUNEL signal was scarcely observed. At the middle stage of initial cells, a large number of pinocytotic vesicles were transferred to the nucleus, where the vesicle membrane fused with the nuclear membrane to release calcium into the nucleoplasm. In addition, abundant Ca2+ aggregated in the condensed chromatin and nucleolus, where the TUNEL signal appeared the strongest. At the late stage of initial cells, the chromatin and nucleolus gradually degraded and disappeared, and the nucleus appeared broken-like, as Ca2+ in the cell wall had nearly completely disappeared, and Ca2+ in the nucleus was also rapidly reduced. Furthermore, the TUNEL signal also disappeared. These phenomena indicated that an increase in Ca2+ concentration in the nucleus might activate the PCD of secretory cavity cells, and further Ca2+ accumulation contributed to the regulation of nuclear DNA degradation.  相似文献   
98.
Clathrin and retromer have key functions for retrograde trafficking between early endosomes and the trans -Golgi network (TGN). Previous studies on Shiga toxin suggested that these two coat complexes operate in a sequential manner. Here, we show that the curvature recognition subunit component sorting nexin 1 (SNX1) of retromer interacts with receptor-mediated endocytosis-8 (RME-8) protein, and that RME-8 and SNX1 colocalize on early endosomes together with a model cargo of the retrograde route, the receptor-binding B-subunit of Shiga toxin (STxB). RME-8 has previously been found to bind to the clathrin uncoating adenosine triphosphatase (ATPase) Hsc70, and we now report that depletion of RME-8 or Hsc70 affects retrograde trafficking at the early endosomes–TGN interface of STxB and the cation-independent mannose 6-phosphate receptor, an endogenous retrograde cargo protein. We also provide evidence that retromer interacts with the clathrin-binding protein hepatocyte growth factor-regulated tyrosine kinase substrate (Hrs) not only via SNX1, as previously published (Chin Raynor MC, Wei X, Chen HQ, Li L. Hrs interacts with sorting nexin 1 and regulates degradation of epidermal growth factor receptor. J Biol Chem 2001;276:7069–7078), but also via the core complex component Vps35. Hrs codistributes at the ultrastructural level with STxB on early endosomes, and interfering with Hrs function using antibodies or mild overexpression inhibits retrograde transport. Our combined data suggest a model according to which the functions in retrograde sorting on early endosomes of SNX1/retromer and clathrin are articulated by RME-8, and possibly also by Hrs.  相似文献   
99.
To understand the soil fungal community diversity in different zones of the Zoige Alpine Wetland, BIOLOG analysis and traditional culture method were employed in our research. Three sample sites namely the Conservatory Station up-hill slope (CSUS), the Flower Lake side (FLS) and the Conservatory Station down slope (CSDS) with increasing by water content were investigated. The results of BIOLOG showed that fungal catabolic richness index (S) and Shannon diversity index (H) increasingly rose with water content augmented from CSUS to CSDS, while different from the former tendency, the fungal catabolic activity was highest at CSDS and lowest at FLS. Principal component analysis (PCA) results demonstrated the functional diversity of fungal community varied among the three sample sites, showing us more similarity between CSDS and FLS, and considerable difference between CSUS and the former two sites. The outcome of traditional culture method illustrated the number of soil fungi increased from CSUS to CSDS, while the sort of fungal species that could be cultured did not show much difference among the three sample sites.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号