Breeding is the art and science of selecting and changing crop traits for the benefit of human beings. For several decades, tremendous efforts have been made by Chinese scientists in rice breeding in improving grain yield, nutrition quality, and environmental performance, achieving substantial progress for global food security. Several generations of crop breeding technologies have been developed, for example, selection of better performance in the field among variants (conventional breeding), application of molecular markers for precise selection (molecular marker assisted breeding), and development of molecular design (molecular breeding by rational design). In this review, we briefly summarize the advances in conventional breeding, functional genomics for genes and networks in rice that regulate important agronomic traits, and molecular breeding in China with focuses on high yield, good quality, stress tolerance, and high nutrient-use efficiency. These findings have paved a new avenue for rational design of crops to develop ideal varieties with super performance and productivity. 相似文献
Distinguishing things from beings, or matters from lives, is a fundamental question. Extending E. Schr?dinger's neg-entropy and I. Prigogine's dissipative structure, we propose a chemical kinetic view that the earliest "live" process is embedded essentially in a special interaction between a pair of specific components under a particular, corresponding environmental conditions. The interaction exists as an inter-molecular-force-bond complex(IMFBC) that couples two separate chemical processes: one is the spontaneous formation of the IMFBC driven by a decrease of Gibbs free energy as a dissipative process; while the other is the disassembly of the IMFBC driven thermodynamically by free energy input from the environment. The two chemical processes coupled by the IMFBC originated independently and were considered non-living on Earth, but the IMFBC coupling of the two can be considered as the earliest form of metabolism: the first landmark on the path from things to a being. The dynamic formation and disassembly of the IMFBC, as a composite individual, follows a principle designated as "… structure for energy for structure for energy…", the cycle continues; and for short it will be referred to as "structure for energy cycle". With additional features derived from this starting point, the IMFBC-centered "live" process spontaneously evolved into more complex living organisms with the characteristics currently known. 相似文献
The 3′ untranslated region (3′UTR) of hepatitis C virus (HCV) messenger RNA stimulates viral translation by an undetermined mechanism. We identified a high affinity interaction, conserved among different HCV genotypes, between the HCV 3′UTR and the host ribosome. The 3′UTR interacts with 40S ribosomal subunit proteins residing primarily in a localized region on the 40S solvent-accessible surface near the messenger RNA entry and exit sites. This region partially overlaps with the site where the HCV internal ribosome entry site was found to bind, with the internal ribosome entry site-40S subunit interaction being dominant. Despite its ability to bind to 40S subunits independently, the HCV 3′UTR only stimulates translation in cis, without affecting the first round translation rate. These observations support a model in which the HCV 3′UTR retains ribosome complexes during translation termination to facilitate efficient initiation of subsequent rounds of translation. 相似文献
We studied the nest site selection and distribution pattern at landscape level of the German Osprey population, and demonstrated
how to test the predictions of the ideal free distribution theory and its derivatives on such an expanding population. Information
about the location and breeding success of each Osprey nest site between 1995 and 2005 was collected through a long-term monitoring
programme. Data of land cover types were acquired from the administrations of each federal state and the CORINE Land Cover
database. The results showed that Ospreys preferred landscapes with more water bodies and forests. Such sites were also occupied
earlier and had higher local population density. However, in the study period of 11 years, there was a gradual shift from
forest-dominated landscapes to agricultural land-dominated landscapes. The breeding success increased over time, with no difference
in the breeding success between pairs nesting on trees and poles, whereas there was higher breeding success at nest sites
surrounded by more agricultural land and less forest. The more efficient foraging in eutrophic lakes in agricultural landscapes
was the most likely cause for the higher breeding success. The distribution pattern of the Ospreys did not match the resource
allocation, which deviated from the models tested. We suggested that the proximate cues used for nest site selection mismatched
site quality due to anthropogenic environmental changes. 相似文献
This study aimed to investigate the potential effects of gold nanoparticles (Au-NPs) on rat cortical neurons exposed to oxygen–glucose deprivation/reperfusion (OGD/R) and to elucidate the corresponding mechanisms. Primary rat cortical neurons were exposed to OGD/R, which is commonly used in vitro to mimic ischemic injury, and then treated with 5- or 20-nm Au-NPs. We then evaluated cell viability, apoptosis, oxidative stress, and mitochondrial respiration in these neurons. We found that 20-nm Au-NPs increased cell viability, alleviated neuronal apoptosis and oxidative stress, and improved mitochondrial respiration after OGD/R injury, while opposite effects were observed for 5-nm Au-NPs. In terms of the underlying mechanisms, we found that Au-NPs could regulate Akt signaling. Taken together, these results show that 20-nm Au-NPs can protect primary cortical neurons against OGD/R injury, possibly by decreasing apoptosis and oxidative stress, while activating Akt signaling and mitochondrial pathways. Our results suggest that Au-NPs may be potential therapeutic agents for ischemic stroke.