首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5321篇
  免费   390篇
  国内免费   478篇
  2024年   6篇
  2023年   60篇
  2022年   161篇
  2021年   308篇
  2020年   206篇
  2019年   229篇
  2018年   251篇
  2017年   180篇
  2016年   234篇
  2015年   317篇
  2014年   392篇
  2013年   391篇
  2012年   482篇
  2011年   428篇
  2010年   276篇
  2009年   266篇
  2008年   276篇
  2007年   252篇
  2006年   194篇
  2005年   147篇
  2004年   162篇
  2003年   136篇
  2002年   92篇
  2001年   79篇
  2000年   79篇
  1999年   75篇
  1998年   47篇
  1997年   48篇
  1996年   46篇
  1995年   40篇
  1994年   29篇
  1993年   27篇
  1992年   26篇
  1991年   17篇
  1990年   17篇
  1989年   21篇
  1988年   8篇
  1987年   10篇
  1986年   11篇
  1985年   11篇
  1984年   6篇
  1979年   8篇
  1975年   7篇
  1938年   4篇
  1936年   9篇
  1935年   5篇
  1933年   8篇
  1932年   9篇
  1931年   9篇
  1929年   7篇
排序方式: 共有6189条查询结果,搜索用时 421 毫秒
141.
Calcimycin is a rare divalent cation specific ionophore antibiotic that has many biochemical and pharmaceutical applications. We have recently cloned and sequenced the Streptomyces chartreusis calcimycin biosynthesis gene cluster as well as identified the genes required for the synthesis of the polyketide backbone of calcimycin. Additional modifying or decorating enzymes are required to convert the polyketide backbone into the biologically active calcimycin. Using targeted mutagenesis of Streptomyces we were able to show that calM from the calcimycin biosynthesis gene cluster is required for calcimycin production. Inactivating calM by PCR targeting, caused high level accumulation of N-demethyl calcimycin. CalM in the presence of S-adenosyl-L-methionine converted N-demethyl calcimycin to calcimycin in vitro. The enzyme was determined to have a kinetic parameter of Km 276 μM, kcat 1.26 min−1 and kcat/Km 76.2 M−1 s−1. These results proved that CalM is a N-methyltransferase that is required for calcimycin biosynthesis, and they set the stage for generating much desired novel calcimycin derivatives by rational genetic and chemical engineering.  相似文献   
142.
In this study, we cloned the full coding region of NGF gene from the caprine ovary. Result showed the caprine NGF cDNA (GenBank Accession No. JQ308184) contained a 726 bp open reading frame encoding a protein with 241 amino acid residues. Bioinformatic analysis indicated that caprine NGF amino acid sequence was 83–99 % identical to that of mouse, pig, dog, human and bovine. It was predicted that caprine NGF contained nine serine phosphorylation loci, four threonine phosphorylation loci and nine specific PKC phosphorylation loci. The NGF mRNA expression pattern showed that NGF gene was expressed highly in ovary. This work provided an important experimental basis for further research on the function of NGF in goat. A single nucleotide polymorphism (A705G) in the coding region of NGF gene was detected by PCR–RFLP and DNA sequencing in 630 goats of three breeds. The frequencies of G allele were 0.52–0.61, and frequencies of A allele were 0.48–0.39 for SN, GZ and BG breeds, respectively. The does with GG genotype had higher litter size than those with GA and AA genotypes (P < 0.05). Hence, the biochemical and physiological functions, together with the results obtained in our investigation, suggest that the NGF gene could serve as a genetic marker for litter size in goat breeding.  相似文献   
143.
144.
Several chiral ligands containing (R,R)‐diaminocyclohexane moieties and pyrrole, furan, or benzene have been synthesized. These ligands were tested in enantioselective zinc‐catalyzed hydrosilylation reactions; excellent enantioselectivities were obtained when the ligands containing (R,R)‐diaminocyclohexane moieties and furan rings were used. For comparison, zinc chloride combined with different potassium carboxylate salts and ligands were also tested for catalytic hydrosilylation reactions. Chirality 25:275–280, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   
145.
Abstract

Complex network analysis has received increasing interest in recent years, which provides a remarkable tool to describe complex systems of interacting entities, particular for biological systems. In this paper, we propose a methodology for identifying the significant nodes of the networks, including core nodes, bridge nodes and high-influential nodes, based on the idea of community and two new ranking measures, InterRank and IntraRank. The results show the significant nodes form a small number in biological networks, and uncover the relative small number of which has advantage for reducing the dimensions of the network and possibly help to define new biological targets.  相似文献   
146.
Abstract

Self-assembly and aggregation of guanine rich sequences can provide useful insights into DNA nanotechnology and telomeric structure and function. In this paper, we designed a guanine rich sequence d(GGCGTTTTGCGG). We found that it can form stable structure in appropriate condition and it exhibits an anomalous CD spectra. This structures can be imaged in ambient environment with a Nanoscope III AFM (Digital Instruments). We found it forms branch structure and long multistrand DNA nanowire after incubation at 37°C for 612 hours in 25 mM TE (pH=8.0) + 5 mM Mg2+ + 50 mM K+. The ability to self-assemble into branches and long wires not only clearly demonstrate its potential as scaffold structures for nanotechnology, but also give aids to understand telomeric structure further. We have proposed a model to explain how these structures formed.  相似文献   
147.
Abstract

A new approach using a 3-D Cartesian coordinate system to represent protein sequences has been derived. By the 3-D Graphical representation we make a comparison of sequences belonging to nine different proteins.  相似文献   
148.
Previous studies proved that bone marrow‐derived mesenchymal stem cells (BMSCs) could improve a variety of immune‐mediated disease by its immunomodulatory properties. In this study, we investigated the effect on airway remodeling and airway inflammation by administrating BMSCs in chronic asthmatic mice. Forty‐eight female BALB/c mice were randomly distributed into PBS group, BMSCs treatment group, BMSCs control group, and asthmatic group. The levels of cytokine and immunoglobulin in serum and bronchoalveolar lavage fluid were detected by enzyme‐linked immunosorbent assay. The number of CD4+CD25+regulatory T cells and morphometric analysis was determined by flow cytometry, hematoxylin‐eosin, immunofluorescence staining, periodic‐acid Schiff, and masson staining, respectively. We found that airway remodeling and airway inflammation were evident in asthmatic mice. Moreover, low level of IL‐12 and high levels of IL‐13, IL‐4, OVA‐specific IgG1, IgE, and IgG2a and the fewer number of CD4+CD25+regulatory T cells were present in asthmatic group. However, transplantation of BMSCs significantly decreased airway inflammation and airway remodeling and level of IL‐4, OVA‐specific IgE, and OVA‐specific IgG1, but elevated level of IL‐12 and the number of CD4 + CD25 + regulatory T cells in asthma (P < 0.05). However, BMSCs did not contribute to lung regeneration and had no significant effect on levels of IL‐10, IFN‐Y, and IL‐13. In our study, BMSCs engraftment prohibited airway inflammation and airway remodeling in chronic asthmatic group. The beneficial effect of BMSCs might involved the modulation imbalance cytokine toward a new balance Th1–Th2 profiles and up‐regulation of protective CD4 + CD25 + regulatory T cells in asthma, but not contribution to lung regeneration. J. Cell. Biochem. 114: 1595–1605, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   
149.
150.
Many fermentation products are produced under microaerobic or anaerobic conditions, in which oxygen is undetectable by dissolved oxygen probe, presenting a challenge for process monitoring and control. Extracellular redox potentials that can be detected conveniently affect intracellular redox homeostasis and metabolism, and consequently control profiles of fermentation products, which provide an alternative for monitoring and control of these fermentation processes. This article reviews updated progress in the impact of redox potentials on gene expression, protein biosynthesis and metabolism as well as redox potential control strategies for more efficient production of fermentation products, taking ethanol fermentation by the yeast Saccharomyces under microaerobic conditions and butanol production by the bacterium Clostridium under anaerobic conditions as examples.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号