首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   226篇
  免费   15篇
  国内免费   1篇
  2024年   1篇
  2023年   3篇
  2022年   15篇
  2021年   23篇
  2020年   20篇
  2019年   37篇
  2018年   15篇
  2017年   9篇
  2016年   7篇
  2015年   12篇
  2014年   11篇
  2013年   23篇
  2012年   21篇
  2011年   11篇
  2010年   8篇
  2009年   4篇
  2008年   3篇
  2007年   9篇
  2006年   4篇
  2005年   2篇
  2003年   2篇
  1990年   1篇
  1987年   1篇
排序方式: 共有242条查询结果,搜索用时 15 毫秒
41.
Among the long list of age-related complications, Alzheimer’s disease (AD) has the most dreadful impact on the quality of life due to its devastating effects on memory and cognitive abilities. Although a plausible correlation between the phosphatidylinositol 3-kinase (PI3K) signaling and different processes involved in neurodegeneration has been evidenced, few articles reviewed the task. The current review aims to unravel the mechanisms by which the PI3K pathway plays pro-survival roles in normal conditions, and also to discuss the original data obtained from international research laboratories on this topic. Responses to questions on how alterations of the PI3K/Akt signaling pathway affect Tau phosphorylation and the amyloid cascade are given. In addition, we provide a general overview of the association between oxidative stress, neuroinflammation, alterations of insulin signaling, and altered autophagy with aberrant activation of this axis in the AD brain. The last section provides a special focus on the therapeutic possibility of the PI3K/Akt/mTOR modulators, either categorized as chemicals or herbals, in AD. In conclusion, determining the correct timing for the administration of the drugs seems to be one of the most important factors in the success of these agents. Also, the role of the PI3K/Akt signaling axis in the progression or repression of AD widely depends on the context of the cells; generally speaking, while PI3K/Akt activation in neurons and neural stem cells is favorable, its activation in microglia cells may be harmful.  相似文献   
42.
It has been suggested that the allele frequency of thrombophilic mutations is affected by glucose-6-phosphate dehydrogenase (G6PD) deficiency. The prevalence of thrombophilic mutations were studied in sixty G6PD deficient individuals including 57 males and three females with the mean age of 15 ± 3.08 and 110 age and sex matched healthy individuals consisted of 95 males and 15 females with the mean age of 16.19 ± 2.17 from the Kermanshah Province of Iran. Using a combination of PCR-RFLP technique, single strand conformation polymorphism (SSCP) analysis and DNA sequencing polymorphic G6PD mutations were identified. The factor V Leiden, prothrombin G20210A and methylenetetrahydrofolate reductase (MTHFR) C677T were detected by PCR-RFLP method using MnlI, HindIII and HinfI restriction enzymes, respectively. Three mutations, G6PD Mediterranean, G6PD Chatham and G6PD Cosenza were identified in 60 G6PD deficient individuals with highest prevalence of G6PD Mediterranean (91.6%). In G6PD deficient individuals the prevalence of factor V Leiden tended to be higher (5%) compared to healthy individuals (2.7%). The prevalence of prothrombin G20210A mutation in G6PD deficient individuals was 1.7%. However, in normal subjects the prevalence of this mutation was 2.7%. The frequency of T allele in G6PD deficient individuals were insignificantly higher (29.16%) than those in healthy individuals (26.8%). Our finding indicates that the prevalence of factor V Leiden, prothrombin G20210A and MTHFR C677T in G6PD deficient individuals is not statistically different compared to normal subjects and G6PD deficiency is not associated with these thrombophilic mutations in Western Iran.  相似文献   
43.
Individuals who live to 85 and beyond without developing major age-related diseases may achieve this, in part, by lacking disease susceptibility factors, or by possessing resistance factors that enhance their ability to avoid disease and prolong lifespan. Healthy aging is a complex phenotype likely to be affected by both genetic and environmental factors. We sequenced 24 candidate healthy aging genes in DNA samples from 47 healthy individuals aged eighty-five years or older (the ‘oldest-old’), to characterize genetic variation that is present in this exceptional group. These healthy seniors were never diagnosed with cancer, cardiovascular disease, pulmonary disease, diabetes, or Alzheimer disease. We re-sequenced all exons, intron-exon boundaries and selected conserved non-coding sequences of candidate genes involved in aging-related processes, including dietary restriction (PPARG, PPARGC1A, SIRT1, SIRT3, UCP2, UCP3), metabolism (IGF1R, APOB, SCD), autophagy (BECN1, FRAP1), stem cell activation (NOTCH1, DLL1), tumor suppression (TP53, CDKN2A, ING1), DNA methylation (TRDMT1, DNMT3A, DNMT3B) Progeria syndromes (LMNA, ZMPSTE24, KL) and stress response (CRYAB, HSPB2). We detected 935 variants, including 848 single nucleotide polymorphisms (SNPs) and 87 insertion or deletions; 41% (385) were not recorded in dbSNP. This study is the first to present a comprehensive analysis of genetic variation in aging-related candidate genes in healthy oldest-old. These variants and especially our novel polymorphisms are valuable resources to test for genetic association in models of disease susceptibility or resistance. In addition, we propose an innovative tagSNP selection strategy that combines variants identified through gene re-sequencing- and HapMap-derived SNPs.  相似文献   
44.
45.

Objective

Increased RANTES expression has been described to have a role in atherosclerosis plaque formation. Functional polymorphisms within RANTES promoter region have shown association with increased risk of coronary atherosclerosis (CAD). The aim of this study was to examine the RANTES mRNA expression in patients with CAD compared to patients without CAD and its association with RANTES − 403 G/A polymorphism in an Iranian population.

Methods

The study was performed on 319 patients who underwent coronary artery angiography and patients with > 50% stenosis in vessels considered as case groups (CAD+) N = 191 and normal vessels group as control (CAD−) N = 128. In each group 20 patients were examined for RANTES mRNA expression.RANTES mRNA expression was examined using quantitative real-time PCR. Genotyping of − 403 polymorphism was performed using PCR-RFLP technique.

Results

We found that RANTES mRNA expression was increased to 1.37 fold in CAD patients compared to the controls but the difference was not statistically significant. Also comparing the RANTES mRNA expression in patients with different RANTES − 403 G/A polymorphism showed that in patients carrying AA genotype RANTES mRNA expression was increased to 1.74 fold compared to patients carrying GG genotype and to 1.51 fold compared to patients carrying GA genotype. No significant difference for allele and genotype frequencies of RANTES − 403 polymorphism was found between cases and controls.

Conclusion

More studies on larger number of samples are required to further evaluate role of RANTES in pathogenesis of CAD.  相似文献   
46.
To study the effect of an exogenous cytokinin application on safflower yield, an experiment was conducted in 2012–2013. Two cultivars of safflower (Goldasht and Zendehrood) and five concentrations of 6-benzylaminopurine (BAP) (0, 25, 50, 75, and 100 μM) were applied at the flowering stage. Results indicated that the application of 75 μM of BAP showed increased seed and oil yield by 17.54 and 18.29 % over the control, respectively. The increase in seed yield by application of BAP was attributed to the increase in characters like number of heads per plant, number of seeds per head, and 1,000 seed weight. Applying of BAP increased oil content compared with the control. To determine the concentration of cytokinin which has the highest performance for increasing seed yield, regression analysis were estimated showing that in the Zendehrood cultivar, the application of 43 μM of BAP produced the highest seed yield, and in the Goldasht cultivar the application of 73 μM of BAP during flowering produced the highest seed yield.  相似文献   
47.
Purpose: The newer methods of cancer treatment require new idea of drug delivery in cancer cells. Due to numerous researches electromagnetic field affect on cell function and cell membrane for possible therapeutic and drug delivery. In this article, we determined in vitro uptake of fluorescent dyes into the attached K562 cells due to time-varying magnetic field exposure. Method and material: The K562 cells were exposed to magnetic pulses via Magstim stimulator and double 70?mm coil. The strength and duration of pulses in all experiments were the same and three different frequencies of 0.25, 1 and 10?Hz pulses for 56, 112 and 28 numbers of pulses were applied (nine experimental groups) and uptake of Ly and PI was measured in each group. Result: Our results show that magnetic field can efficiently increase permeability. Among the treatment groups, the system gives the optimal permeabilization when cells are exposed to a train of 28 pulses with 1?Hz frequency.  相似文献   
48.
Calcium silicate (CaSiO3, CS) ceramic composites reinforced with graphene nanoplatelets (GNP) were prepared using hot isostatic pressing (HIP) at 1150°C. Quantitative microstructural analysis suggests that GNP play a role in grain size and is responsible for the improved densification. Raman spectroscopy and scanning electron microscopy showed that GNP survived the harsh processing conditions of the selected HIP processing parameters. The uniform distribution of 1 wt.% GNP in the CS matrix, high densification and fine CS grain size help to improve the fracture toughness by ∼130%, hardness by ∼30% and brittleness index by ∼40% as compared to the CS matrix without GNP. The toughening mechanisms, such as crack bridging, pull-out, branching and deflection induced by GNP are observed and discussed. The GNP/CS composites exhibit good apatite-forming ability in the simulated body fluid (SBF). Our results indicate that the addition of GNP decreased pH value in SBF. Effect of addition of GNP on early adhesion and proliferation of human osteoblast cells (hFOB) was measured in vitro. The GNP/CS composites showed good biocompatibility and promoted cell viability and cell proliferation. The results indicated that the cell viability and proliferation are affected by time and concentration of GNP in the CS matrix.  相似文献   
49.
Adherence of intestinal pathogens, including Escherichia coli O157:H7, to human intestinal epithelial cells is a key step in pathogenesis. Probiotic bacteria, including Lactobacillus helveticus R0052 inhibit the adhesion of E. coli O157:H7 to epithelial cells, a process which may be related to specific components of the bacterial surface. Surface-layer proteins (Slps) are located in a paracrystalline layer outside the bacterial cell wall and are thought to play a role in tissue adherence. However, the ability of S-layer protein extract derived from probiotic bacteria to block adherence of enteric pathogens has not been investigated. Human epithelial (HEp-2 and T84) cells were treated with S-layer protein extract alone, infected with E. coli O157:H7, or pretreated with S-layer protein extract prior to infection to determine their importance in the inhibition of pathogen adherence. The effects of S-layer protein extracts were characterized by phase-contrast and immunofluorescence microscopy and measurement of the transepithelial electrical resistance of polarized monolayers. Pre-treatment of host epithelial cells with S-layer protein extracts prior to E. coli O157:H7 infection decreased pathogen adherence and attaching-effacing lesions in addition to preserving the barrier function of monolayers. These in vitro studies indicate that a non-viable constituent derived from a probiotic strain may prove effective in interrupting the infectious process of an intestinal pathogen.  相似文献   
50.
Exosomes are mobile extracellular vesicles with a diameter 40 to 150 nm. They play a critical role in several processes such as the development of cancers, intercellular signaling, drug resistance mechanisms, and cell-to-cell communication by fusion onto the cell membrane of recipient cells. These vesicles contain endogenous proteins and both noncoding and coding RNAs (microRNA and messenger RNAs) that can be delivered to various types of cells. Furthermore, exosomes exist in body fluids such as plasma, cerebrospinal fluid, and urine. Therefore, they could be used as a novel carrier to deliver therapeutic nucleic-acid drugs for cancer therapy. It was recently documented that, hypoxia promotes exosomes secretion in different tumor types leading to the activation of vascular cells and angiogenesis. Cancer cell-derived exosomes (CCEs) have been used as prognostic and diagnostic markers in many types of cancers because exosomes are stable at 4°C and −70°C. CCEs have many functional roles in tumorigenesis, metastasis, and invasion. Consequently, this review presents the data about the therapeutic application of exosomes and the role of CCEs in cancer invasion, drug resistance, and metastasis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号