首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   355篇
  免费   26篇
  2023年   2篇
  2022年   7篇
  2021年   12篇
  2020年   9篇
  2019年   10篇
  2018年   13篇
  2017年   15篇
  2016年   16篇
  2015年   14篇
  2014年   15篇
  2013年   40篇
  2012年   25篇
  2011年   48篇
  2010年   16篇
  2009年   8篇
  2008年   27篇
  2007年   22篇
  2006年   15篇
  2005年   11篇
  2004年   11篇
  2003年   5篇
  2002年   8篇
  2001年   4篇
  2000年   6篇
  1999年   5篇
  1998年   5篇
  1997年   3篇
  1996年   3篇
  1995年   1篇
  1994年   1篇
  1985年   2篇
  1983年   1篇
  1982年   1篇
排序方式: 共有381条查询结果,搜索用时 31 毫秒
51.
Biochemical activity and core stability are essential properties of proteins, maintained usually by conserved amino acids. Structural dynamics emerged in recent years as another essential aspect of protein functionality. Structural dynamics enable the adaptation of the protein to binding substrates and to undergo allosteric transitions, while maintaining the native fold. Key residues that mediate structural dynamics would thus be expected to be conserved or exhibit coevolutionary patterns at least. Yet, the correlation between sequence evolution and structural dynamics is yet to be established. With recent advances in efficient characterization of structural dynamics, we are now in a position to perform a systematic analysis. In the present study, a set of 34 enzymes representing various folds and functional classes is analyzed using information theory and elastic network models. Our analysis shows that the structural regions distinguished by their coevolution propensity as well as high mobility are predisposed to serve as substrate recognition sites, whereas residues acting as global hinges during collective dynamics are often supported by conserved residues. We propose a mobility scale for different types of amino acids, which tends to vary inversely with amino acid conservation. Our findings suggest the balance between physical adaptability (enabled by structure-encoded motions) and chemical specificity (conferred by correlated amino acid substitutions) underlies the selection of a relatively small set of versatile folds by proteins.  相似文献   
52.
Lezon TR  Bahar I 《Biophysical journal》2012,102(6):1331-1340
Substrate transport in sodium-coupled amino acid symporters involves a large-scale conformational change that shifts the access to the substrate-binding site from one side of the membrane to the other. The structural change is particularly substantial and entails a unique piston-like quaternary rearrangement in glutamate transporters, as evidenced by the difference between the outward-facing and inward-facing structures resolved for the archaeal aspartate transporter Glt(Ph). These structural changes occur over time and length scales that extend beyond the reach of current fully atomic models, but are regularly explored with the use of elastic network models (ENMs). Despite their success with other membrane proteins, ENM-based approaches for exploring the collective dynamics of Glt(Ph) have fallen short of providing a plausible mechanism. This deficiency is attributed here to the anisotropic constraints imposed by the membrane, which are not incorporated into conventional ENMs. Here we employ two novel (to our knowledge) ENMs to demonstrate that one can largely capture the experimentally observed structural change using only the few lowest-energy modes of motion that are intrinsically accessible to the transporter, provided that the surrounding lipid molecules are incorporated into the ENM. The presence of the membrane reduces the overall energy of the transition compared with conventional models, showing that the membrane not only guides the selected mechanism but also acts as a facilitator. Finally, we show that the dynamics of Glt(Ph) is biased toward transitions of individual subunits of the trimer rather than cooperative transitions of all three subunits simultaneously, suggesting a mechanism of transport that exploits the intrinsic dynamics of individual subunits. Our software is available online at http://www.membranm.csb.pitt.edu.  相似文献   
53.
54.
Dynamic rheology, UV/VIS spectrometry with temperature programming cuvette and reaction calorimetry were conducted on cellulose pulp/FeTNa (NaOH solution containing ferric tartaric acid complex) solutions to investigate their thermostability and spinnability. Color of cellulose/FeTNa solutions changed above 90 °C due to the decomposition of the complex. Thermal activity of cellulose/FeTNa solution started above 130 °C induced by water vapor evolution and complex decomposition. Regeneration of cellulose/FeTNa solutions in a non-solvent (acetic acid and Na-gluconate mixture) resulted in transition from cellulose I into cellulose II structure as revealed by WAXS measurements. Wet-spinning attempts of cellulose/FeTNa solutions yielded fiber-like shaped bodies with a brittle structure.  相似文献   
55.

Background

Bacteria are well known to form dormant persister cells that are tolerant to most antibiotics. Such intrinsic tolerance also facilitates the development of multidrug resistance through acquired mechanisms. Thus persister cells are a promising target for developing more effective methods to control chronic infections and help prevent the development of multidrug-resistant bacteria. However, control of persister cells is still an unmet challenge.

Methodology/Principal Findings

We show in this report that (Z)-4-bromo-5-(bromomethylene)-3-methylfuran-2(5H)-one (BF8) can restore the antibiotic susceptibility of Pseudomonas aeruginosa PAO1 persister cells at growth non-inhibitory concentrations. Persister control by BF8 was found to be effective against both planktonic and biofilm cells of P. aeruginosa PAO1. Interestingly, although BF8 is an inhibitor of quorum sensing (QS) in Gram-negative bacteria, the data in this study suggest that the activities of BF8 to revert antibiotic tolerance of P. aeruginosa PAO1 persister cells is not through QS inhibition and may involve other targets.

Conclusion

BF8 can sensitize P. aeruginosa persister cells to antibiotics.  相似文献   
56.
57.
Huntington disease (HD) is a genetically dominant condition caused by expanded CAG repeats which code for glutamine in the HD gene product, huntingtin. Huntingtin is expressed in almost all tissues, so abnormalities outside the brain can also be expected. Involvement of nuclei and mitochondria in HD pathophysiology has been suggested. In fact mitochondrial dysfunction is reported in brains of patients suffering from HD. The tRNA gene mutations are one of hot spots that can cause mitochondrial disorders. In this study, possible mitochondrial DNA (mtDNA) damage was evaluated by screening for mutations in the tRNAleu/lys and ATPase 6 genes of 20 patients with HD, using PCR and automated DNA sequencing. Mutations including an A8656G mutation in one patient were observed, which may be causal to the disease. Understanding the role of mitochondria in the pathogenesis of neurodegenerative diseases could potentially be important for the development of therapeutic strategies in HD.  相似文献   
58.
Eyal E  Bahar I 《Biophysical journal》2008,94(9):3424-3435
With recent advances in single-molecule manipulation techniques, it is now possible to measure the mechanical resistance of proteins to external pulling forces applied at specific positions. Remarkably, such recent studies demonstrated that the pulling/stretching forces required to initiate unfolding vary considerably depending on the location of the application of the forces, unraveling residue/position-specific response of proteins to uniaxial tension. Here we show that coarse-grained elastic network models based on the topology of interresidue contacts in the native state can satisfactory explain the relative sizes of such stretching forces exerted on different residue pairs. Despite their simplicity, such models presumably capture a fundamental property that dominates the observed behavior: deformations that can be accommodated by the relatively lower frequency modes of motions intrinsically favored by the structure require weaker forces and vice versa. The mechanical response of proteins to external stress is therefore shown to correlate with the anisotropic fluctuation dynamics intrinsically accessible in the folded state. The dependence on the overall fold implies that evolutionarily related proteins sharing common structural features tend to possess similar mechanical properties. However, the theory cannot explain the differences observed in a number of structurally similar but sequentially distant domains, such as the fibronectin domains.  相似文献   
59.
Influenza virus hemagglutinin (HA), a homotrimeric integral membrane glycoprotein essential for viral infection, is engaged in two biological functions: recognition of target cells' receptor proteins and fusion of viral and endosomal membranes, both requiring substantial conformational flexibility from the part of the glycoprotein. The different modes of collective motions underlying the functional mobility/adaptability of the protein are determined in the present study using an extension of the Gaussian network model (GNM) to treat concerted anisotropic motions. We determine the molecular mechanisms that may underlie HA function, along with the structural regions or residues whose mutations are expected to impede function. Good agreement between theoretically predicted fluctuations of individual residues and corresponding x-ray crystallographic temperature factors is found, which lends support to the GNM elucidation of the conformational dynamics of HA by focusing upon a subset of dominant modes. The lowest frequency mode indicates a global torsion of the HA trimer about its longitudinal axis, accompanied by a substantial mobility at the viral membrane connection. This mode is proposed to constitute the dominant molecular mechanism for the translocation and aggregation of HAs, and for the opening and dilation of the fusion pore. The second and third collective modes indicate a global bending, allowing for a large lateral surface exposure, which is likely to facilitate the close association of the viral and endosomal membranes before pore opening. The analysis of kinetically hot residues, in contrast, reveals a localization of energy centered around the HA2 residue Asp112, which apparently triggers the solvent exposure of the fusion peptide.  相似文献   
60.
The anaerobic digestion of lignocellulosic wastes is considered an efficient method for managing the world’s energy shortages and resolving contemporary environmental problems. However, the recalcitrance of lignocellulosic biomass represents a barrier to maximizing biogas production. The purpose of this review is to examine the extent to which sequencing methods can be employed to monitor such biofuel conversion processes. From a microbial perspective, we present a detailed insight into anaerobic digesters that utilize lignocellulosic biomass and discuss some benefits and disadvantages associated with the microbial sequencing techniques that are typically applied. We further evaluate the extent to which a hybrid approach incorporating a variation of existing methods can be utilized to develop a more in-depth understanding of microbial communities. It is hoped that this deeper knowledge will enhance the reliability and extent of research findings with the end objective of improving the stability of anaerobic digesters that manage lignocellulosic biomass.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号