首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   272篇
  免费   25篇
  国内免费   3篇
  2023年   3篇
  2022年   12篇
  2021年   15篇
  2020年   8篇
  2019年   19篇
  2018年   12篇
  2017年   11篇
  2016年   18篇
  2015年   17篇
  2014年   12篇
  2013年   31篇
  2012年   17篇
  2011年   22篇
  2010年   11篇
  2009年   8篇
  2008年   9篇
  2007年   5篇
  2006年   5篇
  2005年   8篇
  2004年   2篇
  2003年   1篇
  2002年   2篇
  2001年   4篇
  2000年   1篇
  1999年   7篇
  1998年   4篇
  1997年   9篇
  1996年   3篇
  1995年   2篇
  1993年   5篇
  1992年   1篇
  1990年   1篇
  1989年   2篇
  1988年   4篇
  1987年   1篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1978年   1篇
  1972年   1篇
  1954年   1篇
排序方式: 共有300条查询结果,搜索用时 15 毫秒
61.
Complete sequences of the rRNA genes of Drosophila melanogaster   总被引:19,自引:0,他引:19  
In this, the first of three papers, we present the sequence of the ribosomal RNA (rRNA) genes of Drosophila melanogaster. The gene regions of D. melanogaster rDNA encode four individual rRNAs: 18S (1,995 nt), 5.8S (123 nt), 2S (30 nt), and 28S (3,945 nt). The ribosomal DNA (rDNA) repeat of D. melanogaster is AT rich (65.9% overall), with the spacers being particularly AT rich. Analysis of DNA simplicity reveals that, in contrast to the intergenic spacer (IGS) and the external transcribed spacer (ETS), most of the rRNA gene regions have been refractory to the action of slippage-like events, with the exception of the 28S rRNA gene expansion segments. It would seem that the 28S rRNA can accommodate the products of slippage-like events without loss of activity. In the following two papers we analyze the effects of sequence divergence on the evolution of (1) the 28S gene "expansion segments" and (2) the 28S and 18S rRNA secondary structures among eukaryotic species, respectively. Our detailed analyses reveal, in addition to unequal crossing-over, (1) the involvement of slippage and biased mutation in the evolution of the rDNA multigene family and (2) the molecular coevolution of both expansion segments and the nucleotides involved with compensatory changes required to maintain secondary structures of RNA.   相似文献   
62.
63.
MOTIVATION: Sensitivity analysis provides key measures that aid in unraveling the design principles responsible for the robust performance of biological networks. Such metrics allow researchers to investigate comprehensively model performance, to develop more realistic models, and to design informative experiments. However, sensitivity analysis of oscillatory systems focuses on period and amplitude characteristics, while biologically relevant effects on phase are neglected. RESULTS: Here, we introduce a novel set of phase-based sensitivity metrics for performance: period, phase, corrected phase and relative phase. Both state- and phase-based tools are applied to free-running Drosophila melanogaster and Mus musculus circadian models. Each metric produces unique sensitivity values used to rank parameters from least to most sensitive. Similarities among the resulting rank distributions strongly suggest a conservation of sensitivity with respect to parameter function and type. A consistent result, for instance, is that model performance of biological oscillators is more sensitive to global parameters than local (i.e. circadian specific) parameters. Discrepancies among these distributions highlight the individual metrics' definition of performance as specific parametric sensitivity values depend on the defined metric, or output. AVAILABILITY: An implementation of the algorithm in MATLAB (Mathworks, Inc.) is available from the authors. SUPPLEMENTARY INFORMATION: Supplementary Data are available at Bioinformatics online.  相似文献   
64.
65.
Fibrella aestuarina BUZ 2(T) is the type strain of the recently characterized genus Fibrella. Here we report the draft genome sequence of this strain, which consists of a single scaffold representing the chromosome (with 11 gaps) and a 161-kb circular plasmid.  相似文献   
66.
beta-Thalassemias are a heterogeneous group of autosomal recessive disorders, characterized by reduced or absence of the beta-globin chain production by the affected alleles. Transplantation of genetically corrected autologous hematopoietic stem cell (HSC) is an attractive approach for treatment of these disorders. Gene targeting (homologous recombination) has many desirable features for gene therapy due to its ability to target the mutant genes and restore their normal expression. In the present study, a specific gene construct for beta-globin gene replacement was constructed consisting of: two homologous stems including, upstream and downstream regions of beta-globin gene, beta-globin gene lying between hygromycin and neomycin resistant genes as positive selection markers and thymidine kinase expression cassettes at both termini as negative selection marker. All segments were subcloned into pBGGT vector. The final plasmid was checked by sequencing and named as pFBGGT. Mammalian cell line COS-7 was transfected with linear plasmid by lipofection followed by positive and negative selection. DNA of the selected cells was analyzed by PCR and sequencing to confirm the occurrence of homologous recombination. In this novel strategy gene replacement was achieved in one step and by a single construct.  相似文献   
67.
An overview of models of stomatal conductance at the leaf level   总被引:4,自引:0,他引:4  
Stomata play a key role in plant adaptation to changing environmental conditions as they control both water losses and CO2 uptake. Particularly, in the context of global change, simulations of the consequences of drought on crop plants are needed to design more efficient and water‐saving cropping systems. However, most of the models of stomatal conductance (gs) developed at the leaf level link gs to environmental factors or net photosynthesis (Anet), but do not include satisfactorily the effects of drought, impairing our capacity to simulate plant functioning in conditions of limited water supply. The objective of this review was to draw an up‐to‐date picture of the gs models, from the empirical to the process‐based ones, along with their mechanistic or deterministic bases. It focuses on models capable to account for multiple environmental influences with emphasis on drought conditions. We examine how models that have been proposed for well‐watered conditions can be combined with those specifically designed to deal with drought conditions. Ideas for future improvements of gs models are discussed: the issue of co‐regulation of gs and Anet; the roles of CO2, absissic acid and H2O2; and finally, how to better address the new challenges arising from the issue of global change.  相似文献   
68.

Background  

The cell shape and morphology of plant tissues are intimately related to structural modifications in the primary cell wall that are associated with key processes in the regulation of cell growth and differentiation. The primary cell wall is composed mainly of cellulose immersed in a matrix of hemicellulose, pectin, lignin and some structural proteins. Xyloglucan is a hemicellulose polysaccharide present in the cell walls of all land plants (Embryophyta) and is the main hemicellulose in non-graminaceous angiosperms.  相似文献   
69.
Bagheri HC  Wagner GP 《Genetics》2004,168(3):1713-1735
Dominance is a form of phenotypic robustness to mutations. Understanding how such robustness can evolve provides a window into how the relation between genotype and phenotype can evolve. As such, the issue of dominance evolution is a question about the evolution of inheritance systems. Attempts at explaining the evolution of dominance have run into two problems. One is that selection for dominance is sensitive to the frequency of heterozygotes. Accordingly, dominance cannot evolve unless special conditions lead to the presence of a high frequency of mutant alleles in the population. Second, on the basis of theoretical results in metabolic control analysis, it has been proposed that metabolic systems possess inherent constraints. These hypothetical constraints imply the default manifestation of dominance of the wild type with respect to the effects of mutations at most loci. Hence, some biologists have maintained that an evolutionary explanation is not relevant to dominance. In this article, we put into question the hypothetical assumption of default metabolic constraints. We show that this assumption is based on an exclusion of important nonlinear interactions that can occur between enzymes in a pathway. With an a priori exclusion of such interactions, the possibility of epistasis and hence dominance modification is eliminated. We present a theoretical model that integrates enzyme kinetics and population genetics to address dominance evolution in metabolic pathways. In the case of mutations that decrease enzyme concentrations, and given the mechanistic constraints of Michaelis-Menten-type catalysis, it is shown that dominance of the wild type can be extensively modified in a two-enzyme pathway. Moreover, we discuss analytical results indicating that the conclusions from the two-enzyme case can be generalized to any number of enzymes. Dominance modification is achieved chiefly through changes in enzyme concentrations or kinetic parameters such as k(cat), both of which can alter saturation levels. Low saturation translates into higher levels of dominance with respect to mutations that decrease enzyme concentrations. Furthermore, it is shown that in the two-enzyme example, dominance evolves as a by-product of selection in a manner that is insensitive to the frequency of heterozygotes. Using variation in k(cat) as an example of modifier mutations, it is shown that the latter can have direct fitness effects in addition to dominance modification effects. Dominance evolution can occur in a frequency-insensitive manner as a result of selection for such dual-effects alleles. This type of selection may prove to be a common pattern for the evolution of phenotypic robustness to mutations.  相似文献   
70.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号