首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1290篇
  免费   97篇
  国内免费   2篇
  2024年   1篇
  2023年   12篇
  2022年   23篇
  2021年   29篇
  2020年   21篇
  2019年   26篇
  2018年   32篇
  2017年   27篇
  2016年   49篇
  2015年   69篇
  2014年   72篇
  2013年   110篇
  2012年   94篇
  2011年   108篇
  2010年   64篇
  2009年   60篇
  2008年   88篇
  2007年   80篇
  2006年   74篇
  2005年   50篇
  2004年   57篇
  2003年   52篇
  2002年   37篇
  2001年   43篇
  2000年   21篇
  1999年   26篇
  1998年   9篇
  1997年   7篇
  1996年   4篇
  1995年   5篇
  1994年   2篇
  1993年   3篇
  1992年   6篇
  1991年   8篇
  1990年   4篇
  1989年   4篇
  1988年   1篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1977年   1篇
  1972年   1篇
排序方式: 共有1389条查询结果,搜索用时 38 毫秒
31.
Polycystic ovary syndrome (PCOS) is one of the most common endocrine disorders, which is involved in the multi-system disease, and its etiology is still not clearly understood. It is currently considered that not only the genetic factors but also the environment factors play a crucial role in the pathogenesis of PCOS. Obesity plays an important role through the insulin, leptin and endocannabinoid system in the pathological process of PCOS, leading to more severe clinical manifestations. The aim of our present study is to investigate whether there is association between single nucleotide polymorphisms (SNPs) of Gln223Arg and Pro1019Pro in the leptin receptor gene (LEPR) and PCOS in a Korean population. Interestingly, a significant association was found between the Pro1019Pro in LEPR gene and PCOS, and a highly significant association was found between the Gln223Arg in LEPR gene and PCOS (P = 0.033, OR = 1.523, 95% confidence interval and P < 0.0001, OR = 0.446, 95% confidence interval). Moreover, genotype combination and haplotype analyses indicate that Gln223Arg and Pro1019Pro polymorphisms of LEPR are significantly associated with the risk of PCOS.  相似文献   
32.
33.
Chinese hamster ovary (CHO) cells, that are widely used for production of therapeutic proteins, are subjected to apoptosis and autophagy under the stresses induced by conditions such as nutrient deprivation, hyperosmolality and addition of sodium butyrate. To achieve a cost-effective level of production, it is important to extend the culture longevity. Until now, there have been numerous studies in which apoptosis of recombinant CHO (rCHO) cells was inhibited, resulting in enhanced production of therapeutic proteins. Recently, autophagy in rCHO cells has drawn attention because it can be genetically and chemically controlled to increase cell survival and productivity. Autophagy is a global catabolic process which involves multiple pathways and genes that regulate the lysosomal degradation of intracellular components. A simultaneous targeting of anti-apoptosis and pro-autophagy could lead to more efficient protection of cells from stressful culture conditions. In this regard, it is worthwhile to have a detailed understanding of the autophagic pathway, in order to select appropriate genes and chemical targets to manage autophagy in rCHO cells, and thus to enhance the production of therapeutic proteins.  相似文献   
34.
35.
36.
c-Jun NH2-terminal kinases (JNKs) and phosphatidylinositol 3-kinase (PI3-K) play critical roles in chronic diseases such as cancer, type II diabetes, and obesity. We describe here the binding of quercetagetin (3,3′,4′,5,6,7-hydroxyflavone), related flavonoids, and SP600125 to JNK1 and PI3-K by ATP-competitive and immobilized metal ion affinity-based fluorescence polarization assays and measure the effect of quercetagetin on JNK1 and PI3-K activities. Quercetagetin attenuated the phosphorylation of c-Jun and AKT, suppressed AP-1 and NF-κB promoter activities, and also reduced cell transformation. It attenuated tumor incidence and reduced tumor volumes in a two-stage skin carcinogenesis mouse model.Our crystallographic structure determination data show that quercetagetin binds to the ATP-binding site of JNK1. Notably, the interaction between Lys55, Asp169, and Glu73 of JNK1 and the catechol moiety of quercetagetin reorients the N-terminal lobe of JNK1, thereby improving compatibility of the ligand with its binding site. The results of a theoretical docking study suggest a binding mode of PI3-K with the hydroxyl groups of the catechol moiety forming hydrogen bonds with the side chains of Asp964 and Asp841 in the p110γ catalytic subunit. These interactions could contribute to the high inhibitory activity of quercetagetin against PI3-K. Our study suggests the potential use of quercetagetin in the prevention or therapy of cancer and other chronic diseases.  相似文献   
37.
Numerous liver diseases are associated with extensive oxidative tissue damage. It is well established that Wnt/β-catenin signaling directs multiple hepatocellular processes, including development, proliferation, regeneration, nutrient homeostasis, and carcinogenesis. It remains unexplored whether Wnt/β-catenin signaling provides hepatocyte protection against hepatotoxin-induced apoptosis. Conditional, liver-specific β-catenin knockdown (KD) mice and their wild-type littermates were challenged by feeding with a hepatotoxin 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) diet to induce chronic oxidative liver injury. Following the DDC diet, mice with β-catenin-deficient hepatocytes demonstrate increased liver injury, indicating an important role of β-catenin signaling for liver protection against oxidative stress. This finding was further confirmed in AML12 hepatocytes with β-catenin signaling manipulation in vitro using paraquat, a known oxidative stress inducer. Immunofluorescence staining revealed an intense nuclear FoxO3 staining in β-catenin-deficient livers, suggesting active FoxO3 signaling in response to DDC-induced liver injury when compared with wild-type controls. Consistently, FoxO3 target genes p27 and Bim were significantly induced in β-catenin KD livers. Conversely, SGK1, a β-catenin target gene, was significantly impaired in β-catenin KD hepatocytes that failed to inactivate FoxO3. Furthermore, shRNA-mediated deletion of FoxO3 increased hepatocyte resistance to oxidative stress-induced apoptosis, confirming a proapoptotic role of FoxO3 in the stressed liver. Our findings suggest that Wnt/β-catenin signaling is required for hepatocyte protection against oxidative stress-induced apoptosis. The inhibition of FoxO through its phosphorylation by β-catenin-induced SGK1 expression reduces the apoptotic function of FoxO3, resulting in increased hepatocyte survival. These findings have relevance for future therapies directed at hepatocyte protection, regeneration, and anti-cancer treatment.  相似文献   
38.
Amyloid β-peptide (Aβ) pathology is an invariant feature of Alzheimer disease, preceding any detectable clinical symptoms by more than a decade. To this end, we seek to identify agents that can reduce Aβ levels in the brain via novel mechanisms. We found that (20S)-Rg3, a triterpene natural compound known as ginsenoside, reduced Aβ levels in cultured primary neurons and in the brains of a mouse model of Alzheimer disease. The (20S)-Rg3 treatment induced a decrease in the association of presenilin 1 (PS1) fragments with lipid rafts where catalytic components of the γ-secretase complex are enriched. The Aβ-lowering activity of (20S)-Rg3 directly correlated with increased activity of phosphatidylinositol 4-kinase IIα (PI4KIIα), a lipid kinase that mediates the rate-limiting step in phosphatidylinositol 4,5-bisphosphate synthesis. PI4KIIα overexpression recapitulated the effects of (20S)-Rg3, whereas reduced expression of PI4KIIα abolished the Aβ-reducing activity of (20S)-Rg3 in neurons. Our results substantiate an important role for PI4KIIα and phosphoinositide modulation in γ-secretase activity and Aβ biogenesis.  相似文献   
39.
MicroRNA-155 (miR-155) is expressed in many cancers. It also executes evolutionary conserved functions in normal B cell development. We show that the Kaposi''s sarcoma-associated herpesvirus (KSHV) latency locus, which contains an ortholog of miR-155, miR-K12-11, complements B cell deficiencies in miR-155 knockout mice. Germinal center (GC) formation was rescued in spleen, lymph node, and Peyer''s patches. Immunoglobulin levels were restored. This demonstrates that KSHV can complement the normal, physiological function of miR-155.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号