首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1276篇
  免费   92篇
  国内免费   2篇
  2023年   10篇
  2022年   22篇
  2021年   30篇
  2020年   21篇
  2019年   26篇
  2018年   32篇
  2017年   28篇
  2016年   49篇
  2015年   68篇
  2014年   73篇
  2013年   110篇
  2012年   97篇
  2011年   106篇
  2010年   63篇
  2009年   61篇
  2008年   90篇
  2007年   77篇
  2006年   70篇
  2005年   50篇
  2004年   54篇
  2003年   50篇
  2002年   38篇
  2001年   42篇
  2000年   20篇
  1999年   27篇
  1998年   7篇
  1997年   7篇
  1996年   3篇
  1995年   3篇
  1994年   2篇
  1993年   3篇
  1992年   6篇
  1991年   8篇
  1990年   5篇
  1989年   4篇
  1988年   1篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1974年   1篇
排序方式: 共有1370条查询结果,搜索用时 234 毫秒
991.
Although CpG containing DNA is an important regulator of innate immune responses via toll-like receptor 9 (TLR9), excessive activation of this receptor is detrimental to the host. Here, we show that cytosolic phospholipase A2 (cPLA2) activation is important for TLR9-mediated inducible nitric oxide synthase (iNOS) expression. Activation of TLR9 signaling by CpG induces iNOS expression and NO production. Inhibition of TLR9 blocked the iNOS expression and NO production. The CpG also stimulates cPLA2-hydrolyzed arachidonic acid (AA) release. Inhibition of cPLA2 activity by inhibitor attenuated the iNOS expression by CpG response. Additionally, knockdown of cPLA2 protein by miRNA also suppressed the CpG-induced iNOS expression. Furthermore, the CpG rapidly phosphorylates three MAPKs and Akt. A potent inhibitor for p38 MAPK or Akt blocked the CpG-induced AA release and iNOS expression. These results suggest that TLR9 activation stimulates cPLA2 activity via p38 or Akt pathways and mediates iNOS expression.  相似文献   
992.
Lee JG  Lee SH  Park DW  Bae YS  Yun SS  Kim JR  Baek SH 《FEBS letters》2007,581(4):787-793
Phosphatidic acid (PA) is implicated in pathophysiological processes associated with cellular signaling events and inflammation, which include the expressional regulation of numerous genes. Here, we show that PA stimulation increases matrix metalloproteinase-9 (MMP-9) expression in macrophages through tumor necrosis factor (TNF)-alpha signaling. We performed antibody array analysis on proteins from macrophages stimulated with PA. PA was found to induce the production of TNF-alpha, but not of TNF receptor (TNFR)1 and TNFR2 in a time-dependent manner and stimulated significant, though delayed, MMP-9 expression. PA induced the phosphorylations of both ERK1/2 and p38, but not of c-jun amino-terminal kinase. Moreover, only ERK1/2 inhibition by U0126 suppressed PA-induced TNF-alpha production and MMP-9 expression. Neutralizing TNF-alpha, TNFR1 or TNFR2 antibodies significantly suppressed PA-induced MMP-9 expression, suggesting that the production of TNF-alpha in response to PA preceded the expression of MMP-9. Moreover, lipopolysaccharide-induced PA also led to TNF-alpha release and resulted in MMP-9 expression. Taken together, these observations suggest that PA may play a role in MMP-9 regulation through ERKs/TNF-alpha/TNFRs-dependent signaling pathway.  相似文献   
993.
Superoxide anion regulates plant growth and tuber development of potato   总被引:3,自引:2,他引:1  
Kim MS  Kim HS  Kim YS  Baek KH  Oh HW  Hahn KW  Bae RN  Lee IJ  Joung H  Jeon JH 《Plant cell reports》2007,26(10):1717-1725
A higher concentration of H2O2 was detected in the sense transgenic potato plant (SS4) with the lily chCu,ZnSOD sequence, whereas higher levels of O2 was detected in the antisense transgenic plant (SA1) than the WT plant. The elongation growth in SA1 was significantly inhibited by treatment with diphenyleneiodonium, an inhibitor of O2 generation, and promoted in the SS4 on treatment with herbicide methyl viologen, a generator of apoplastic O2. Higher concentrations of GAs were detected during plant growth and the early stage of tuberization in SA1. Complete recovery of the above elongation growth and microtuberization pattern in transgenic plants following treatment of GA3 or an inhibitor of gibberellin synthesis, paclobutrazol, indicate that these changes were mainly caused by active GA levels. In conclusion, a specific ROS (O2 ) acts as a signal transducer via GA biosynthetic pathways for the regulation of plant growth and tuber development of potato.  相似文献   
994.
Reversible modifications of target proteins by small ubiquitin-like modifier (SUMO) proteins are involved in many cellular processes in yeast and animals. Yet little is known about the function of sumoylation in plants. Here, we show that the SIZ1 gene, which encodes an Arabidopsis SUMO E3 ligase, regulates innate immunity. Mutant siz1 plants exhibit constitutive systemic-acquired resistance (SAR) characterized by elevated accumulation of salicylic acid (SA), increased expression of pathogenesis-related (PR) genes, and increased resistance to the bacterial pathogen Pseudomonas syringae pv. tomato (Pst) DC3000. Transfer of the NahG gene to siz1 plants results in reversal of these phenotypes back to wild-type. Analyses of the double mutants, npr1 siz1, pad4 siz1 and ndr1 siz1 revealed that SIZ1 controls SA signalling. SIZ1 interacts epistatically with PAD4 to regulate PR expression and disease resistance. Consistent with these observations, siz1 plants exhibited enhanced resistance to Pst DC3000 expressing avrRps4, a bacterial avirulence determinant that responds to the EDS1/PAD4-dependent TIR-NBS-type R gene. In contrast, siz1 plants were not resistant to Pst DC3000 expressing avrRpm1, a bacterial avirulence determinant that responds to the NDR1-dependent CC-NBS-type R gene. Jasmonic acid (JA)-induced PDF1.2 expression and susceptibility to Botrytis cinerea were unaltered in siz1 plants. Taken together, these results demonstrate that SIZ1 is required for SA and PAD4-mediated R gene signalling, which in turn confers innate immunity in Arabidopsis.  相似文献   
995.
Collagen-induced platelet signaling is mediated by binding to the primary receptor glycoprotein VI (GPVI). Reactive oxygen species produced in response to collagen have been found to be responsible for the propagation of GPVI signaling pathways in platelets. Therefore, it has been suggested that antioxidant enzymes could down-regulate GPVI-stimulated platelet activation. Although the antioxidant enzyme peroxiredoxin II (PrxII) has emerged as having a role in negatively regulating signaling through various receptors by eliminating H2O2 generated upon receptor stimulation, the function of PrxII in collagen-stimulated platelets is not known. We tested the hypothesis that PrxII negatively regulates collagen-stimulated platelet activation. We analyzed PrxII-deficient murine platelets. PrxII deficiency enhanced GPVI-mediated platelet activation through the defective elimination of H2O2 and the impaired protection of SH2 domain-containing tyrosine phosphatase 2 (SHP-2) against oxidative inactivation, which resulted in increased tyrosine phosphorylation of key components for the GPVI signaling cascade, including Syk, Btk, and phospholipase Cγ2. Interestingly, PrxII-mediated antioxidative protection of SHP-2 appeared to occur in the lipid rafts. PrxII-deficient platelets exhibited increased adhesion and aggregation upon collagen stimulation. Furthermore, in vivo experiments demonstrated that PrxII deficiency facilitated platelet-dependent thrombus formation in injured carotid arteries. This study reveals that PrxII functions as a protective antioxidant enzyme against collagen-stimulated platelet activation and platelet-dependent thrombosis.  相似文献   
996.
Melia azedarach var. japonica trees with leaf yellowing, small leaves and witches' broom were observed for the first time in Korea. A phytoplasma from the symptomatic leaves was identified based on the 16Sr DNA sequence as a member of aster yellows group, ribosomal subgroup 16SrI‐B. Sequence analyses of more variable regions such as 16S–23S intergenic spacer region, secY gene, ribosomal protein (rp) operon and tuf gene showed 99.5?100% nucleotide identity to several GenBank sequences of group 16SrI phytoplasmas. Phylogenetic analysis confirmed that the Melia azedarach witches' broom phytoplasma belongs to aster yellows group.  相似文献   
997.
Because of the importance of the type III protein-secretion system in bacteria-plant interaction, its function in bacterial pathogenesis of plants has been intensively studied. To identify bacterial proteins interacting with Xanthomonas hrp gene products that are involved in pathogenicity, we performed the glutathione-bead binding analysis of Xanthomonas lysates containing GST-tagged Hrp proteins. Analysis of glutathione-bead bound proteins by 1-DE and MALDI-TOF has demonstrated that Avr proteins, RecA, and several components of the type III secretion system interact with HrpB protein. This proteomic approach could provide a powerful tool in finding interaction partners of Hrp proteins whose roles in host-pathogen interaction need further studies.  相似文献   
998.
999.
In order to develop a high-level expression system in transgenic rice, we inserted a synthetic gene (sgfp) encoding a modified form of the green fluorescent protein (GFP) into two expression vectors, Act1-sgfp for an untargeted and rbcS-Tp-sgfp for a chloroplast targeted expression. Several fertile transgenic rice plants were produced by the Agrobacterium-mediated method. Confocal microscopic analyses demonstrated that, in cells expressing the Act1-sgfp, GFP fluorescence was localized within the cytoplasm and nucleoplasm whereas, in cells expressing the rbcS-Tp-sgfp fusion gene, the fluorescence was specifically targeted to chloroplasts and non-green plastids. The levels of sgfp expression were about 0.5% of the total soluble protein in mature leaf tissues of the Act1-sgfp transformed lines. In contrast, expression levels were markedly increased in mature leaf tissues of the rbcS-Tp-sgfp transformed lines, yielding about 10% of the total soluble protein. N-terminal sequencing of the localized GFPs revealed that the Tp-GFP fusion protein was correctly processed during import to non-green plastids, as well as to chloroplasts. Thus, our results demonstrate that GFP can be produced at high levels and localized in specific subcellular spaces of transgenic plants, providing a high-level expression system for general use in rice, an agronomically important cereal.  相似文献   
1000.
We have carried out NMR and molecular modeling studies of peptidomimetic HIV-1 protease inhibitors, LB71116: Qc-Asn-Phepsi[(1R,2S)-cis-epoxide]Gly-NH-CH(isopropyl)2 where Qc stands for quinaldic acid and LB71148: Qc-(SMe)Pen(O)2-Phepsi[(1R,2S)-cis-epoxide]Gly-NH-CH(isoprop yl)2 where (SMe)Pen(O)2 stands for S-methyl-S-dioxo-penicillamine. Through conformational calculations and NMR data analysis, we have obtained preferred conformations of the two inhibitors in solution. To our knowledge, this work is one of the first extensive conformational studies of peptidomimetics containing cis-epoxide amide isostere. The resulting preferred conformations contain extended structures. In these conformations, the psi of Phe(cep) is maintained about 130 degrees and the phi angle of (cep)Gly prefers +/- 150 degrees [where Phe(cep) and (cep)Gly are the residues generated by the replacement of the Phe-Gly peptide bond with cis-epoxide]. Two conformations were commonly observed in the preferred conformations of each inhibitor. Through restrained molecular dynamics simulating the hydrogen bond formation between our inhibitor and a water molecule ('flap water'), one of the conformations is assumed as the conformation which can bind to the enzyme without large conformational changes. Recently, we had the opportunity to compare the selected preferred conformation with the binding conformation of LB71116 observed from the X-ray studies of the complex between LB71116 and HIV-1 protease. These two conformations are surprisingly similar to each other. Thus, we can explain high activity and selectivity of our inhibitors to the HIV-1 protease by the similarity between the preferred conformations in solution and the binding conformation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号