首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2774篇
  免费   171篇
  国内免费   2篇
  2947篇
  2024年   3篇
  2023年   8篇
  2022年   39篇
  2021年   62篇
  2020年   23篇
  2019年   42篇
  2018年   59篇
  2017年   41篇
  2016年   86篇
  2015年   146篇
  2014年   176篇
  2013年   197篇
  2012年   264篇
  2011年   230篇
  2010年   176篇
  2009年   155篇
  2008年   197篇
  2007年   167篇
  2006年   159篇
  2005年   124篇
  2004年   123篇
  2003年   114篇
  2002年   65篇
  2001年   61篇
  2000年   60篇
  1999年   48篇
  1998年   14篇
  1997年   19篇
  1996年   17篇
  1995年   7篇
  1994年   3篇
  1993年   8篇
  1992年   10篇
  1991年   7篇
  1990年   4篇
  1989年   7篇
  1988年   3篇
  1985年   4篇
  1984年   1篇
  1983年   1篇
  1982年   1篇
  1981年   1篇
  1979年   2篇
  1978年   1篇
  1977年   1篇
  1975年   4篇
  1973年   3篇
  1972年   1篇
  1970年   1篇
  1965年   1篇
排序方式: 共有2947条查询结果,搜索用时 11 毫秒
131.
The contemporary distribution and genetic structure of a freshwater fish provide insight into its historical geodispersal and geographical isolation following Quaternary climate changes. The short ninespine stickleback, Pungitius kaibarae, is a small gasterosteid fish occurring in freshwater systems on the Korean Peninsula and in southeast Russia. On the Korean Peninsula, P. kaibarae populations are distributed in three geographically separated regions: the NE (northeast coast), SE (southeast coast), and a limited area in the ND (Nakdong River). In this study, we used mitochondrial loci and microsatellites to investigate the evolutionary history of P. kaibarae populations by assessing their pattern of genetic structure. Our analyses revealed a marked level of divergence among three regional populations, suggesting a long history of isolation following colonization, although ND individuals showed relatively higher genetic affinity to populations from SE than those from NE. The populations from NE showed a great degree of interpopulation differentiation, whereas populations from SE exhibited only weak genetic structuring. Upon robust phylogenetic analysis, P. kaibarae formed a monophyletic group with Russian P. sinensis and P. tymensis with strong node confidence values, indicating that P. kaibarae populations on the Korean Peninsula originated from the southward migration of its ancestral lineage around the middle Pleistocene.  相似文献   
132.

Aim

Altered vitamin D signaling is associated with cardiac dysfunction, but the pathogenic mechanism is not clearly understood. We examine the mechanism and the role of vitamin D signaling in the development of cardiac dysfunction.

Methods and Results

We analyzed 1α-hydroxylase (1α-OHase) knockout (1α-OHase−/−) mice, which lack 1α-OH enzymes that convert the inactive form to hormonally active form of vitamin D. 1α-OHase−/− mice showed modest cardiac hypertrophy at baseline. Induction of pressure overload by transverse aortic constriction (TAC) demonstrated exaggerated cardiac dysfunction in 1α-OHase−/− mice compared to their WT littermates with a significant increase in fibrosis and expression of inflammatory cytokines. Analysis of calcium (Ca2+) transient demonstrated profound Ca2+ handling abnormalities in 1α-OHase−/− mouse cardiomyocytes (CMs), and treatment with paricalcitol (PC), an activated vitamin D3 analog, significantly attenuated defective Ca2+ handling in 1α-OHase−/− CMs. We further delineated the effect of vitamin D deficiency condition to TAC by first correcting the vitamin D deficiency in 1α-OHase−/− mice, followed then by either a daily maintenance dose of vitamin D or vehicle (to achieve vitamin D deficiency) at the time of sham or TAC. In mice treated with vitamin D, there was a significant attenuation of TAC-induced cardiac hypertrophy, interstitial fibrosis, inflammatory markers, Ca2+ handling abnormalities and cardiac function compared to the vehicle treated animals.

Conclusions

Our results provide insight into the mechanism of cardiac dysfunction, which is associated with severely defective Ca2+ handling and defective vitamin D signaling in 1α-OHase−/− mice.  相似文献   
133.
Identification of immunogenic peptides for the generation of cytotoxic T lymphocytes (CTLs) may lead to the development of novel cellular therapies to treat disease relapse in acute myeloid leukemia (AML) patients. The objective of these studies was to evaluate the ability of unique HLA-A2.1-specific nonameric peptides derived from CD33 antigen to generate AML-specific CTLs ex vivo. We present data here on the identification of an immunogeneic HLA-A2.1-specific CD33(65-73) peptide (AIISGDSPV) that was capable of inducing CTLs targeted to AML cells. The CD33-CTLs displayed HLA-A2.1-restricted cytotoxicity against both mononuclear cells from AML patients and the AML cell line. The peptide- as well as AML cell-specificity of CD33-CTLs was demonstrated and the secretion of IFN-gamma by the CTLs was detected in response to CD33(65-73) peptide stimulation. The cultures contained a distinct CD33(65-73) peptide-tetramer(+)/CD8(+) population. Alteration of the native CD33(65-73) peptide at the first amino acid residue from alanine (A) to tyrosine (Y) enhanced the HLA-A2.1 affinity/stability of the modified CD33 peptide (YIISGDSPV) and induced CTLs with increased cytotoxicity against AML cells. These data therefore demonstrate the potential of using immunogenic HLA-A2.1-specific CD33 peptides in developing a cellular immunotherapy for the treatment of AML patients.  相似文献   
134.
Neuromedin B (NMB) is one of the bombesin-like peptides in mammals. Recently, bombesin-like peptides have been characterized as growth factors in highly vascularized tumors. In this study, we report that NMB potently stimulates in vivo neovascularization in a mouse Matrigel plug and the sprouting of endothelial cells ex vivo in rat aortic rings. In addition, NMB increases the migration and tube formation in human umbilical vein endothelial cells (HUVECs). Moreover, treatment of HUVECs with NMB activates the extracellular signal-regulated kinase 1/2 (ERK1/2), Akt, and endothelial nitric oxide synthase (eNOS) and increases the level of NO production in a dose- and time-dependent manner. Furthermore, ERK activation and angiogenic sprouting in response to NMB are significantly blocked by the MEK inhibitor. Inhibition of phosphatidylinositol 3-kinase (PI3K) suppresses the NMB-stimulated tubular formation of HUVECs, along with reduction in the phosphorylation of Akt and eNOS. Taken together, these results indicate that NMB is a novel angiogenic peptide, and its angiogenic activity is mediated by activating the MEK/ERK- and PI3K/Akt/eNOS-dependent pathways. This study suggests that NMB may play important roles in mediating a variety of pathophysiological angiogenesis.  相似文献   
135.
CDC48 is a member of the AAA ATPase superfamily. Yeast CDC48 and its mammalian homolog p97 are implicated in diverse cellular processes, including mitosis, membrane fusion, and ubiquitin-dependent protein degradation. However, the cellular functions of plant CDC48 proteins are largely unknown. In the present study, we performed virus-induced gene silencing (VIGS) screening and found that silencing of a gene encoding a tobacco CDC48 homolog, NgCDC48, resulted in severe abnormalities in leaf and shoot development in tobacco. Furthermore, transgenic tobacco plants (35S:anti-NgCDC48), in which the NgCDC48 gene was suppressed using the antisense RNA method, exhibited severely aberrant development of both vegetative and reproductive organs, resulting in arrested shoot and leaf growth and sterile flowers. Approximately 57–83% of 35S:anti-NgCDC48 plants failed to develop mature organs and died at early stage of development. Scanning electron microscopy showed that both adaxial and abaxial epidermal pavement cells in antisense transgenic leaves were significantly smaller and more numerous than those in wild type leaves. These results indicate that NgCDC48 is critically involved in cell growth and development of tobacco plants. An in vivo targeting experiment revealed that NgCDC48 resides in the endoplasmic reticulum (ER) in tobacco protoplasts. We consider the tantalizing possibility that CDC48-mediated degradation of an as-yet unidentified protein(s) in the ER might be a critical step for cell growth and expansion in tobacco leaves.  相似文献   
136.
137.
Simultaneous nitrification and denitrification using a mixed methanotrophic culture was investigated. When both NO3 -N (108 mg l–1) and NH3-N (59 mg l–1) were added into batch reactors, nitrate removal was complete within 10 h at the rate of 47 mg NO3 -N g VSS–1 day–1 when dissolved oxygen (DO) concentration was maintained at 2 mg DO l–1. Ammonia removal started simultaneously with nitrate removal at a slower rate of 14 NH3-N g VSS–1 day–1. No significant accumulation of nitrite or nitrate during ammonia utilization suggested the occurrence of simultaneous nitrification and denitrification.  相似文献   
138.
A novel bioreactor with an internal adsorbent was developed for the simultaneous fermentation and recovery of prodigiosin-like pigment produced from Serratia sp. KH-95 as a model product in one bioreactor. The pigment concentration recovered in the internal adsorbent was 13.1 g l–1, which was 1.8-fold higher than that obtained in a bioreactor with an external adsorbent.  相似文献   
139.
140.
Advanced breast cancers frequently metastasize to bone, resulting in osteolytic lesions, yet the underlying mechanisms are poorly understood. Here we report that nuclear factor-kappaB (NF-kappaB) plays a crucial role in the osteolytic bone metastasis of breast cancer by stimulating osteoclastogenesis. Using an in vivo bone metastasis model, we found that constitutive NF-kappaB activity in breast cancer cells is crucial for the bone resorption characteristic of osteolytic bone metastasis. We identified the gene encoding granulocyte macrophage-colony stimulating factor (GM-CSF) as a key target of NF-kappaB and found that it mediates osteolytic bone metastasis of breast cancer by stimulating osteoclast development. Moreover, we observed that the expression of GM-CSF correlated with NF-kappaB activation in bone-metastatic tumor tissues from individuals with breast cancer. These results uncover a new and specific role of NF-kappaB in osteolytic bone metastasis through GM-CSF induction, suggesting that NF-kappaB is a potential target for the treatment of breast cancer and the prevention of skeletal metastasis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号