首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   53篇
  免费   4篇
  2018年   3篇
  2017年   1篇
  2012年   1篇
  2011年   1篇
  2010年   2篇
  2009年   3篇
  2008年   7篇
  2007年   7篇
  2006年   6篇
  2005年   4篇
  2004年   3篇
  2003年   3篇
  2002年   3篇
  2001年   4篇
  2000年   5篇
  1998年   1篇
  1997年   2篇
  1996年   1篇
排序方式: 共有57条查询结果,搜索用时 522 毫秒
41.
42.
Extrapair mating strategies are common among socially monogamous birds, but vary widely across ecological and social contexts in which breeding occurs. This variation is thought to reflect a compromise between the direct costs of mates' extrapair behavior and indirect benefits of extrapair fertilizations (EPF) to offspring fitness. However, in most free-living populations, the complete spatial and temporal distribution of mating attempts, genetic characteristics of available mates, and their relative contribution to EPF strategies are difficult to assess. Here we examined prevalence of EPF in relation to breeding density, synchrony, and genetic variability of available mates in a wild population of house finches Carpodacus mexicanus where all breeding attempts are known and all offspring are genotyped. We found that 15% of 59 nests contained extra-pair offspring and 9% of 212 offspring were sired by extra-pair males. We show experimentally that paired males and females avoided EPF displays in the presence of their social partners, revealing direct selection against EPF behavior. However, at the population level, the occurrence of EPF did not vary with nests dispersion, initiation date, synchrony, or with distance between the nests of extrapair partners. Instead, the occurrence of EPF closely covaried with genetic relatedness of a pool of available mates and offspring of genetically dissimilar mating tended to be resistant to a novel pathogen. These results corroborate findings that, in this population, strong fitness benefits of EPF are specific to each individual, thus highlighting the ecological, social, and genetic contingency of costs and benefits of an individual's extrapair behaviors.  相似文献   
43.
Diversity in organismal forms among taxa is thought to reflect distinct selection pressures across environments. The central assumption underlying this expectation is that taxa experiencing similar selection have similar response to that selection. However, because selection acts on trait function, taxa similarity in selection response depends crucially on the relationship between function and morphology. Further, when a trait consists of multiple parts, changes in function in response to selection can result from modification of different parts, and adaptation to the same environment might result in functional but not morphological similarity. Here, we address the extent to which functional and morphological diversity in masticatory apparatus of soricid shrews reflects a shared ecological characteristic of their diet type. We examine the factors limiting morphological variation across shrew species by assessing the relative contribution of trait function (biomechanics of the jaw), ecology, and phylogeny to species similarity in mandibular traits. We found that species that shared diet type were functionally but not morphologically similar. The presence of multiple semi-independently varying traits enabled functional equivalence of composite foraging morphologies and resulted in variable response to selection exerted by similar diet. We show that functional equivalence of multiple morphologies enabled persistence of differences in habitat use (e.g., habitat moisture and coverage) among species that specialize on the same diet. We discuss the importance of developmental and functional integration among traits for evolutionary diversification of morphological structures that generate equivalent functions.  相似文献   
44.
Fitness consequences of ectoparasitism are expressed over the lifetime of their hosts in relation to variation in composition and abundance of the entire ectoparasite community and across all host life history stages. However, most empirical studies have focused on parasite species-specific effects and only during some life history stages. We conducted a systematic, year-long survey of an ectoparasite community in a wild population of house finches Carpodacus mexicanus Müller in south-western Arizona, with a specific focus on ecological and behavioral correlates of ectoparasite prevalence and abundance. We investigated five ectoparasite species: two feather mite genera – both novel for house finches – Strelkoviacarus (Analgidae) and Dermoglyphus (Dermoglyphidae), the nest mite Pellonyssus reedi (Macronyssidae), and the lice Menacanthus alaudae (Menoponidae) and Ricinus microcephalus (Ricinidae). Mite P. reedi and louse Menacanthus alaudae abundance peaked during host breeding season, especially in older birds, whereas feather mite abundance peaked during molt. Overall, breeding birds had more P. reedi than non-breeders, molting males had greater abundance of feather mites than molting females and non-molting males, and young males had more feather mites than older males. We discuss these results in relation to natural history of ectoparasites under study and suggest that ectoparasites might synchronize their life cycles to those of their hosts. Pronounced differences in relative abundance of ectoparasite species among host's life history stages have important implications for evolution of parasite-specific host defenses.  相似文献   
45.
Mating between relatives generally results in reduced offspring viability or quality, suggesting that selection should favor behaviors that minimize inbreeding. However, in natural populations where searching is costly or variation among potential mates is limited, inbreeding is often common and may have important consequences for both offspring fitness and phenotypic variation. In particular, offspring morphological variation often increases with greater parental relatedness, yet the source of this variation, and thus its evolutionary significance, are poorly understood. One proposed explanation is that inbreeding influences a developing organism’s sensitivity to its environment and therefore the increased phenotypic variation observed in inbred progeny is due to greater inputs from environmental and maternal sources. Alternatively, changes in phenotypic variation with inbreeding may be due to additive genetic effects alone when heterozygotes are phenotypically intermediate to homozygotes, or effects of inbreeding depression on condition, which can itself affect sensitivity to environmental variation. Here we examine the effect of parental relatedness (as inferred from neutral genetic markers) on heritable and nonheritable components of developmental variation in a wild bird population in which mate choice is often constrained, thereby leading to inbreeding. We found greater morphological variation and distinct contributions of variance components in offspring from highly related parents: inbred offspring tended to have greater environmental and lesser additive genetic variance compared to outbred progeny. The magnitude of this difference was greatest in late-maturing traits, implicating the accumulation of environmental variation as the underlying mechanism. Further, parental relatedness influenced the effect of an important maternal trait (egg size) on offspring development. These results support the hypothesis that inbreeding leads to greater sensitivity of development to environmental variation and maternal effects, suggesting that the evolutionary response to selection will depend strongly on mate choice patterns and population structure.  相似文献   
46.
In species that produce broods of multiple offspring, parents need to partition resources among simultaneously growing neonates that often differ in growth requirements. In birds, multiple ovarian follicles develop inside the female at the same time, resulting in a trade-off of resources among them and potentially limiting maternal ability for sex-specific allocation. We compared resource acquisition among oocytes in relation to their future sex and ovulation order in two populations of house finches with contrasting sex-biased maternal strategies. In a native Arizona population, where mothers do not bias offspring sex in relation to ovulation order, the male and female oocytes did not show sex-specific trade-offs of resources during growth and there was no evidence for spatial or temporal segregation of male and female oocytes in the ovary. In contrast, in a recently established Montana population where mothers strongly bias offspring sex in relation to ovulation order, we found evidence for both intra-sexual trade-offs among male and female oocytes and sex-specific clustering of oocytes in the ovary. We discuss the importance of sex-specific resource competition among offspring for the evolution of sex-ratio adjustment and sex-specific maternal resource allocation.  相似文献   
47.
Choice of genetically unrelated mates is widely documented, yet it is not known how self-referential mate choice can co-occur with commonly observed directional selection on sexual displays. Across 10 breeding seasons in a wild bird population, we found strong fitness benefits of matings between genetically unrelated partners and show that self-referential choice of genetically unrelated mates alternates with sexual selection on elaborate plumage. Seasonal cycles of diminishing variation in ornamentation, caused by early pairing of the most elaborated males, and influx of increasingly genetically unrelated available mates caused by female-biased dispersal, lead to temporal fluctuations in the target of mate choice and enabled coexistence of directional selection for ornament elaboration with adaptive pairing of genetically unrelated partners.  相似文献   
48.
The evolutionary importance of maternal effects is determined by the interplay of maternal adaptations and strategies, offspring susceptibility to these strategies, and the similarity of selection pressures between the two generations. Interaction among these components, especially in species where males and females differ in the costs and requirements of growth, limits inference about the evolution of maternal strategies from their expression in the offspring phenotype alone. As an alternative approach, we examine divergence in the proximate mechanisms underlying maternal effects across three house finch populations with contrasting patterns of sex allocation: an ancestral population that shows no sex-biased ovulation, and two recently established populations at the northern and southern boundaries of the species range that have opposite sequences of ovulation of male and female eggs. For each population, we examined how oocyte acquisition of hormones, carotenoids and vitamins was affected by oocyte growth and overlap with the same and opposite sexes. Our results suggest that sex-specific acquisition of maternal resources and sex determination of oocytes are linked in this system. We report that acquisition of testosterone by oocytes that become males was not related to growth duration, but instead covaried with temporal exposure to steroids and overlap with other male oocytes. In female oocytes, testosterone acquisition increased with the duration of growth and overlap with male oocytes, but decreased with overlap with female oocytes. By contrast, acquisition of carotenoids and vitamins was mostly determined by organism-wide partitioning among oocytes and oocyte-specific patterns of testosterone accumulation, and these effects did not differ between the sexes. These results provide important insights into three unresolved phenomena in the evolution of maternal effects - (i) the evolution of sex-specific maternal allocation in species with simultaneously developing neonates of both sexes; (ii) the link between sex determination and sex-specific acquisition of maternal products; and (iii) the evolution of context-dependent modulation of maternal effects.  相似文献   
49.
Extreme environmental change during growth often results in an increase in developmental abnormalities in the morphology of an organism. The evolutionary significance of such stress-induced variation depends on the recurrence of a stressor and on the degree to which developmental errors can be accommodated by an organism's ontogeny without significant loss of function. We subjected populations of four species of soricid shrews to an extreme environment during growth and measured changes in the patterns of integration and accommodation of stress-induced developmental errors in a complex of mandibular traits. Adults that grew under an extreme environment had lower integration of morphological variation among mandibular traits and highly elevated fluctuating asymmetry in these traits, compared to individuals that grew under the control conditions. However, traits differed strongly in the magnitude of response to a stressor--traits within attachments of the same muscle (functionally integrated traits) had lower response and changed their integration less than other traits. Cohesiveness in functionally integrated complexes of traits under stress was maintained by close covariation of their developmental variation. Such developmental accommodation of stress-induced variation might enable the individual's functioning and persistence under extreme environmental conditions and thus provides a link between individual adaptation to stress and the evolution of stress resistance.  相似文献   
50.
Abstract Patterns of genetic variation and covariation strongly affect the rate and direction of evolutionary change by limiting the amount and form of genetic variation available to natural selection. We studied evolution of morphological variance-covariance structure among seven populations of house finches (Carpodacus mexicanus) with a known phylogenetic history. We examined the relationship between within- and among-population covariance structure and, in particular, tested the concordance between hierarchical changes in morphological variance-covariance structure and phylogenetic history of this species. We found that among-population morphological divergence in either males or females did not follow the within-population covariance patterns. Hierarchical patterns of similarity in morphological covariance matrices were not congruent with a priori defined historical pattern of population divergence. Both of these results point to the lack of proportionality in morphological covariance structure of finch populations, suggesting that random drift alone is unlikely to account for observed divergence. Furthermore, drift alone cannot explain the sex differences in within- and among-population covariance patterns or sex-specific patterns of evolution of covariance structure. Our results suggest that extensive among-population variation in sexual dimorphism in morphological covariance structure was produced by population differences in local selection pressures acting on each sex.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号