首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   250篇
  免费   52篇
  302篇
  2021年   2篇
  2016年   2篇
  2015年   9篇
  2014年   8篇
  2013年   9篇
  2012年   10篇
  2011年   17篇
  2010年   13篇
  2009年   6篇
  2008年   20篇
  2007年   13篇
  2006年   18篇
  2005年   9篇
  2004年   10篇
  2003年   9篇
  2002年   4篇
  2001年   9篇
  2000年   11篇
  1999年   9篇
  1998年   8篇
  1997年   4篇
  1996年   3篇
  1995年   7篇
  1994年   5篇
  1993年   4篇
  1992年   7篇
  1991年   2篇
  1990年   7篇
  1989年   8篇
  1988年   2篇
  1987年   2篇
  1985年   3篇
  1984年   4篇
  1983年   4篇
  1982年   6篇
  1981年   3篇
  1980年   8篇
  1977年   1篇
  1976年   2篇
  1975年   2篇
  1974年   6篇
  1973年   2篇
  1972年   1篇
  1971年   1篇
  1969年   1篇
  1967年   1篇
  1964年   1篇
  1957年   1篇
  1944年   1篇
  1913年   1篇
排序方式: 共有302条查询结果,搜索用时 15 毫秒
191.
Cyanobacteria possess light-dependent CO2 uptake activity that results in the net hydration of CO2 to HCO3- and may involve a protein-mediated carbonic anhydrase (CA)-like activity. This process is vital for the survival of cyanobacteria and may be a contributing factor in the ecological success of this group of organisms. Here, via isolation of mutants of Synechococcus sp. PCC7942 that cannot grow under low-CO2 conditions, we have identified two novel genes, chpX and chpY, that are involved in light-dependent CO2 hydration and CO2 uptake reactions; co-inactivation of both these genes abolished both activities. The function and mechanism of the CO2 uptake systems supported by each chp gene product differs, with each associated with functionally distinct NAD(P)H dehydrogenase (NDH-1) complexes. The ChpX system has a low affinity for CO2 and is dependent on photosystem I cyclic electron transport, whereas the inducible ChpY system has a high affinity for CO2 and is dependent on linear electron transport. We believe that ChpX and ChpY are involved in a unique, net hydration of CO2 to HCO3-, that is coupled electron flow within the NDH-1 complex on the thylakoid membrane.  相似文献   
192.
Mitochondrial gene divergence of Colombian Drosophila pseudoobscura   总被引:1,自引:0,他引:1  
Isolated populations of drosophila pseudoobscura, separated from North American populations by about 2,400 km, were found in Colombia in 1960. We compared for sequences of the small ribosomal RNA (srRNA) gene on the mitochondria between North American and Colombian D. pseudoobscura in order to clarify the age of the Colombian isolates. The North American populations were not genetically different from each other but were genetically different from the Colombian populations. The Mexican strains represent the area from which the Colombian founders might have come. The estimated net nucleotide divergence between Mexican and Colombian D. pseudoobscura indicates that the Colombian population is not an ancient lineage. Phylogenies using both distance and parsimony methodologies reinforced this conclusion. The Colombian samples group together with both methods but, according to the bootstrap analysis, not significantly. It appears that the populations have not been separated long enough for their DNA sequences to show much divergence.   相似文献   
193.
It was previously shown with concurrent measurements of gas exchange and carbon isotope discrimination that the reduction of ribulose-1,5-bisphosphate carboxylase/oxygenase by an antisense gene construct in transgenic Flaveria bidentis (a C4 species) leads to reduced CO2 assimilation rates, increased bundle-sheath CO2 concentration, and leakiness (defined as the ratio of CO2 leakage to the rate of C4 acid decarboxylation; S. von Caemmerer, A. Millegate, G.D. Farquhar, R.T. Furbank [1997] Plant Physiol 113: 469-477). Increased leakiness in the transformants should result in an increased ATP requirement per mole of CO2 fixed and a change in the ATP-to-NADPH demand. To investigate this, we compared measurements of the quantum yield of photosystem I and II ([phi]PSI and [phi]PSII) with the quantum yield of CO2 fixation ([phi]CO2) in control and transgenic F. bidentis plants in various conditions. Both [phi]PSI/[phi]CO2 and [phi]PSII/[phi]CO2 increased with a decrease in ribulose-1,5-bisphosphate carboxylase/oxygenase content, confirming an increase in leakiness. In the wild type the ratio of [phi]PSI to [phi]PSII was constant at different irradiances but increased with irradiance in the transformants, suggesting that cyclic electron transport may be higher in the transformants. To evaluate the relative contribution of cyclic or linear electron transport to extra ATP generation, we developed a model that links leakiness, ATP/NADP requirements, and quantum yields. Despite some uncertainties in the light distribution between photosystem I and II, we conclude from the increase of [phi]PSII/[phi]CO2 in the transformants that cyclic electron transport is not solely responsible for ATP generation without NADPH production.  相似文献   
194.
The reduction of 3-phosphoglycerate (PGA) to triose phosphate is a key step in photosynthesis linking the photochemical events of the thylakoid membranes with the carbon metabolism of the photosynthetic carbon-reduction (PCR) cycle in the stroma. Glyceraldehyde-3-phosphate dehydrogenase: NADP oxidoreductase (GAPDH) is one of the two chloroplast enzymes which catalyse this reversible conversion. We report on the engineering of an antisense RNA construct directed against the tobacco (Nicotiana tabacum L.) chloroplastlocated GAPDH (A subunit). The construct was integrated into the tobacco genome by Agrobacterium-mediated transformation of leaf discs. Of the resulting transformants, five plants were recovered with reduced GAPDH activities ranging from 11 to 24% of wild-type (WT) activities. Segregation analysis of the kanamycin-resistance character in self-pollinated T1 seed from each of the five transformants revealed that one plant (GAP-R) had two active DNA inserts and the others had one insert. T1 progeny from GAP-R was used to generate plants with GAPDH activities ranging from WT levels to around 7% of WT levels. These were used to study the effect of variable GAPDH activities on metabolite pools for ribulose1,5-bisphosphate (RuBP) and PGA, and the accompanying effects on the rate of CO2 assimilation and other gasexchange parameters. The RuBP pool size was linearly related to GAPDH activity once GAPDH activity dropped below the range for WT plants, but the rate of CO2 assimilation was not affected until RuBP levels dropped to 30–40% of WT levels. That is, the CO2 assimilation rate fell when RuBP per ribulose-1,5-biphosphate carboxylase-oxygenase (Rubisco) site fell below 2 mol·(mol site)–1 while the ratio for WT plants was 4–5 mol·m(mol site)–1. Leaf conductance was not reduced in leaves with reduced GAPDH activities, resulting in an increase in the ratio of intercellular to ambient CO2 partial pressure. Conductance in plants with reduced GAPDH activities was still sensitive to CO2 and showed a normal decline with increases in CO2 partial pressure. Although PGA levels did not fluctuate greatly, the effect of reduced GAPDH activity on RuBP-pool size and assimilation rate can be interpreted as being due to a blockage in the regeneration of RuBP. Concomitant gas-ex change and chlorophyll a fluorescence measurements indicated that photosynthesis changed from being Rubisco-limited to being RuBP-regeneration-limited at a lower CO2 partial pressure in the antisense plants than in WT plants. Photosynthetic electron transport was down-regulated by the build-up of a large proton gradient and the electron-transport chain did not become over-reduced due to a shortage of NADP. Plants with severely reduced GAPDH activity were not photoinhibited despite the continuous presence of a large thylakoid proton gradient in the light. Along with plant size, Rubisco activity, leaf soluble protein and chlorophyll content were reduced in plants with the lowest GAPDH activities. We conclude that chloroplastic GAPDH activity does not appear to limit steady-state photosynthetic CO2 assimilation at ambient CO2. This is because WT leaves maintain the ratio of RuBP per Rubisco site about twofold higher than the level required to achieve a maximal rate of CO2 assimilation.Abbreviations and Symbols bp base pairs - DHAP dihydroxy-acetone phosphate - GAPDH glyceraldehyde-3-phosphate dehy-drogenase - PCR photosynthetic carbon reduction - PGA 3-phosphoglycerate - pi intercellular CO2 partial pressure - qNP non-photochemical fluorescence quenching - qQ photochemicalfluorescence quenching - PSII quantum efficiency of electronflow through PSII - Rubisco ribulose-1,5-bisphosphate carboxy-lase-oxygenase - RuBP ribulose-1,5-bisphosphate - WT wild type We thank Karin Harrison, Prue Kell, Anne Gallagher and Barbara Setchell for excellent technical assistance. G.D.P. and S.V.C. acknowledge support from QE II Research Fellowships (Australian Research Council).  相似文献   
195.
196.
Postnatal developmental characteristics of miniature swine brain were evaluated through the first 9 weeks of age. Differential growth rates of cerebrum, cerebellum and brain stem were defined in terms of DNA, RNA, protein and free amino acid concentrations at ages 5, 21, 35 and 63 days. Within the experimental conditions provided, hyperplasia ceased just prior to ages 21, 35 and 63 days for cerebellum, brain stem and cerebrum, respectively. An additional cerebral growth spurt, observed between weaning at age 35 days and sacrifice at age 63 days, may be indicative of impaired brain development due to inadequate nutrition provided by the dam's milk. Developmental changes in mean concentrations of brain free amino acids varied with anatomical area and differed somewhat from those of other species previously reported. For example, mean cerebral concentrations of aspartic acid, γ-aminobutyric acid and asparagine + glutamine decreased significantly (P < 0·05) with age and mean glutamic acid concentration was 5 times that of taurine.  相似文献   
197.
Hydrogen peroxide inhibited both carboxylase and oxygenase activities of purified, and fully activated, spinach ribulose-1,5-bisphosphate (RuP2) carboxylase-oxygenase. Inhibition of the carboxylase reaction was mixed competitive with respect to CO2 (Ki = 1.2 mM) and uncompetitive with respect to RuP2. For the oxygenase reaction, H2O2 was a competitive inhibitor with respect to O2 (Ki = 2.1 mM) and an uncompetitive inhibitor with respect to RuP2. H2O2 did not alter the stoichiometry between CO2 and RuP2 in the carboxylase reaction, indicating that H2O2 was not itself a substrate for the enzyme. RuP2 decreased the rate of deactivation of the enzyme which occurred at limiting CO2 concentrations. H2O2 greatly enhanced this stabilizing effect of RuP2 but had no effect on the rate of deactivation in the absence of RuP2. The inhibitory and stabilizing effects of H2O2 varied similarly with H2O2 concentration. These instantaneous, reversible effects of H2O2 were readily distinguishable from an irreversible inhibitory effect which occurred quite slowly, and in the absence of RuP2. These observations are discussed in relation to the enzyme's catalytic mechanism and its activation-deactivation transformations.  相似文献   
198.
The development of a simple method for the isolation of purified carboxysomes from the cyanobacterium Synechococcus PCC7942 has made it possible to identify a specific and inducible, intracellular carbonic anhydrase (CA) activity that is strongly associated with carboxysomes. This was shown, in part, through enzyme recovery experiments that indicated that a clear majority of a CA activity that is sensitive to the CA inhibitor ethoxyzolamide (I50 = 4 μm) copurifies with a majority of the cell's ribulose-1,5-bisphosphate carboxylase/oxygenase activity in a highly purified pelletable fraction. Electron microscopy of this pelletable fraction revealed the presence of carboxysomes that were physically intact. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of carboxysome proteins showed that the large and small subunits of ribulose-1,5-bisphosphate carbosylase/oxygenase were clearly prominent and that several other minor proteins could be distinguished. The specific location of this carboxysomal CA activity is further reinforced by the finding that a previously isolated high CO2-requiring mutant, Type II/No. 68 (G.D. Price, M.R. Badger [1989] Plant Physiol 91: 514-525), displayed a 30-fold reduction in carboxysome-associated CA activity when tested under optimal conditions. Carboxysomal CA has the unusual property of being inactivated by dithiothreitol. The enzyme also requires 20 mm Mg2+ (as MgSO4) for near maximum activity; other divalent cations, such as Ca2+ and Mn2+, also stimulate carboxysomal CA activity, but to a lesser extent than Mg2+. Results are discussed in relation to the role of carboxysomes in the CO2-concentrating mechanism in cyanobacteria and the role that carboxysomal CA activity appears to play in this process.  相似文献   
199.
We have examined the effects of cysteamine on the hypothalamic-pituitary-gonadal axis of the adult male rat. A single subcutaneous injection of cysteamine (300 mg/kg) reduces significantly (p less than or equal to 0.05 serum concentrations of LH, FSH and T. Cysteamine blocked LH secretion induced by castration and administration of naloxone and LHRH. Neither acute nor chronic treatment (7 days) altered the hypothalamic LHRH content. These results suggest that cysteamine acts to reduce pituitary responsiveness to LHRH, resulting in lower mean serum gonadotropin and testosterone concentrations. It is possible, however, that cysteamine acts also at the hypothalamus to reduce LHRH secretion and/or at the testes to reduce testosterone release.  相似文献   
200.
The Ebola virus (EBOV) envelope glycoprotein (GP) is the primary target of protective immunity. Mature GP consists of two disulfide-linked subunits, GP1 and membrane-bound GP2. GP is highly glycosylated with both N- and O-linked carbohydrates. We measured the influences of GP glycosylation on antigenicity, immunogenicity, and protection by testing DNA vaccines comprised of GP genes with deleted N-linked glycosylation sites or with deletions in the central hypervariable mucin region. We showed that mutation of one of the two N-linked GP2 glycosylation sites was highly detrimental to the antigenicity and immunogenicity of GP. Our data indicate that this is likely due to the inability of GP2 and GP1 to dimerize at the cell surface and suggest that glycosylation at this site is required for achieving the conformational integrity of GP2 and GP1. In contrast, mutation of two N-linked sites on GP1, which flank previously defined protective antibody epitopes on GP, may enhance immunogenicity, possibly by unmasking epitopes. We further showed that although deleting the mucin region apparently had no effect on antigenicity in vitro, it negatively impacted the elicitation of protective immunity in mice. In addition, we confirmed the presence of previously identified B-cell and T-cell epitopes in GP but show that when analyzed individually none of them were neither absolutely required nor sufficient for protective immunity to EBOV. Finally, we identified other potential regions of GP that may contain relevant antibody or T-cell epitopes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号