首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   220篇
  免费   50篇
  2021年   2篇
  2015年   7篇
  2014年   6篇
  2013年   7篇
  2012年   10篇
  2011年   17篇
  2010年   11篇
  2009年   4篇
  2008年   20篇
  2007年   13篇
  2006年   13篇
  2005年   8篇
  2004年   10篇
  2003年   8篇
  2002年   4篇
  2001年   8篇
  2000年   10篇
  1999年   7篇
  1998年   5篇
  1997年   3篇
  1996年   2篇
  1995年   6篇
  1994年   5篇
  1993年   4篇
  1992年   7篇
  1991年   2篇
  1990年   6篇
  1989年   8篇
  1988年   2篇
  1987年   2篇
  1985年   3篇
  1984年   4篇
  1983年   3篇
  1982年   6篇
  1981年   3篇
  1980年   8篇
  1978年   1篇
  1977年   1篇
  1976年   2篇
  1975年   2篇
  1974年   5篇
  1973年   2篇
  1972年   1篇
  1971年   1篇
  1969年   1篇
  1967年   1篇
  1964年   1篇
  1957年   1篇
  1944年   1篇
  1913年   1篇
排序方式: 共有270条查询结果,搜索用时 15 毫秒
61.
Biomechanical response to acupuncture needling in humans.   总被引:10,自引:0,他引:10  
During acupuncture treatments, acupuncture needles are manipulated to elicit the characteristic "de qi" reaction widely viewed as essential to acupuncture's therapeutic effect. De qi has a biomechanical component, "needle grasp," which we have quantified by measuring the force necessary to pull an acupuncture needle out of the skin (pullout force) in 60 human subjects. We hypothesized that pullout force is greater with both bidirectional needle rotation (BI) and unidirectional rotation (UNI) than no rotation (NO). Acupuncture needles were inserted, manipulated, and pulled out by using a computer-controlled acupuncture needling instrument at eight acupuncture points and eight control points. We found 167 and 52% increases in mean pullout force with UNI and BI, respectively, compared with NO (repeated-measures ANOVA, P < 0.001). Pullout force was on average 18% greater at acupuncture points than at control points (P < 0.001). Needle grasp is therefore a measurable biomechanical phenomenon associated with acupuncture needle manipulation.  相似文献   
62.
High temperature inhibits photosynthesis by several mechanisms including deactivation of Rubisco. The inhibition of photosynthesis by high temperature and its relationship to Rubisco deactivation was studied using tobacco (Nicotiana tabaccum L. cv W38) transformed with a Rubisco activase gene inserted in the antisense orientation and untransformed controls. High temperature (42 °C) reduced photosynthesis in both lines of plants. However, photosynthesis recovered nearly completely in wild-type plants and very little in plants lacking Rubisco activase. The F0 level of chlorophyll fluorescence decreased and qN increased in the control plants during heating. In the antisense plants, qN was always high and F0 increased slightly during heat stress. NADP-malate dehydrogenase activation was unaffected by heat stress in control plants but was increased in the transgenic plants, consistent with a high redox status in the chloroplast. In wild-type plants, the inhibition of photosynthesis could be explained by a reversible decarbamylation of Rubisco and an acceptor-side limitation imposed on photosynthetic electron transport. However, in the anti-activase plants, carbamylation was low and constant and could not explain how photosynthesis was reduced at high temperature. Because ribulose bisphosphate was saturating at high temperature, the reduction in photosynthesis must have been caused by some impairment of Rubisco function not reflected in measurements of activation state or carbamylation status. This in vivo Rubisco impairment was not relieved upon return to lower temperature. We speculate that the reversible decarbamylation of Rubisco at moderately high temperature may be a protective mechanism by which the plant avoids more serious effects on Rubisco and the rest of the photosynthetic apparatus.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   
63.
64.
65.
66.
HIV Dependency Factors (HDFs) are a class of human proteins that are essential for HIV replication, but are not lethal to the host cell when silenced. Three previous genome-wide RNAi experiments identified HDF sets with little overlap. We combine data from these three studies with a human protein interaction network to predict new HDFs, using an intuitive algorithm called SinkSource and four other algorithms published in the literature. Our algorithm achieves high precision and recall upon cross validation, as do the other methods. A number of HDFs that we predict are known to interact with HIV proteins. They belong to multiple protein complexes and biological processes that are known to be manipulated by HIV. We also demonstrate that many predicted HDF genes show significantly different programs of expression in early response to SIV infection in two non-human primate species that differ in AIDS progression. Our results suggest that many HDFs are yet to be discovered and that they have potential value as prognostic markers to determine pathological outcome and the likelihood of AIDS development. More generally, if multiple genome-wide gene-level studies have been performed at independent labs to study the same biological system or phenomenon, our methodology is applicable to interpret these studies simultaneously in the context of molecular interaction networks and to ask if they reinforce or contradict each other.  相似文献   
67.
Quantitative nuclear magnetic resonance (QMR) is being used in human adults to obtain measures of total body fat mass (FM) with high precision. The current study assessed a device specially designed to accommodate infants and children between 3 and 50 kg (EchoMRI-AH). Body composition of 113 infants and children (3.3-49.9 kg) was assessed using dual-energy X-ray absorptiometry (DXA), air displacement plethysmography (ADP, PeaPod for infants ≤ 8 kg and BodPod for children ≥ 6 years) and QMR. Results were compared with the deuterium oxide dilution technique (D(2)O) and a four-compartment model (4-C). The percentages of compliance were: 98% QMR; 75% DXA; 94% BodPod; and 95% PeaPod. Although QMR precision was high (coefficient of variation = 1.42%), it overestimated FM ~10% compared to the 4-C model and underestimated FM by ~4% compared to the deuterium method in children ≥ 6 years. QMR was less concordant with 4-C or D(2)O models for infants ≤ 8 kg. Thus, a piece-wise defined model for mathematically fitting the QMR data to the D(2)O data was employed and this adjustment improved the accuracy relative to D(2)O and 4-C for infants. Our results suggest that the pediatric QMR with appropriate mathematical adjustment provides a fast and precise method for assessing FM longitudinally in infants and in children weighing up to 50 kg.  相似文献   
68.
In areolar “loose” connective tissue, fibroblasts remodel their cytoskeleton within minutes in response to static stretch resulting in increased cell body cross‐sectional area that relaxes the tissue to a lower state of resting tension. It remains unknown whether the loosely arranged collagen matrix, characteristic of areolar connective tissue, is required for this cytoskeletal response to occur. The purpose of this study was to evaluate cytoskeletal remodeling of fibroblasts in, and dissociated from, areolar and dense connective tissue in response to 2 h of static stretch in both native tissue and collagen gels of varying crosslinking. Rheometric testing indicated that the areolar connective tissue had a lower dynamic modulus and was more viscous than the dense connective tissue. In response to stretch, cells within the more compliant areolar connective tissue adopted a large “sheet‐like” morphology that was in contrast to the smaller dendritic morphology in the dense connective tissue. By adjusting the in vitro collagen crosslinking, and the resulting dynamic modulus, it was demonstrated that cells dissociated from dense connective tissue are capable of responding when seeded into a compliant matrix, while cells dissociated from areolar connective tissue can lose their ability to respond when their matrix becomes stiffer. This set of experiments indicated stretch‐induced fibroblast expansion was dependent on the distinct matrix material properties of areolar connective tissues as opposed to the cells' tissue of origin. These results also suggest that disease and pathological processes with increased crosslinks, such as diabetes and fibrosis, could impair fibroblast responsiveness in connective tissues. J. Cell. Physiol. 228: 50–57, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   
69.
For enveloped viruses, fusion of the viral envelope with a cellular membrane is critical for a productive infection to occur. This fusion process is mediated by at least three classes of fusion proteins (Class I, II, and III) based on the protein sequence and structure. For Rift Valley fever virus (RVFV), the glycoprotein Gc (Class II fusion protein) mediates this fusion event following entry into the endocytic pathway, allowing the viral genome access to the cell cytoplasm. Here, we show that peptides analogous to the RVFV Gc stem region inhibited RVFV infectivity in cell culture by inhibiting the fusion process. Further, we show that infectivity can be inhibited for diverse, unrelated RNA viruses that have Class I (Ebola virus), Class II (Andes virus), or Class III (vesicular stomatitis virus) fusion proteins using this single peptide. Our findings are consistent with an inhibition mechanism similar to that proposed for stem peptide fusion inhibitors of dengue virus in which the RVFV inhibitory peptide first binds to both the virion and cell membranes, allowing it to traffic with the virus into the endocytic pathway. Upon acidification and rearrangement of Gc, the peptide is then able to specifically bind to Gc and prevent fusion of the viral and endocytic membranes, thus inhibiting viral infection. These results could provide novel insights into conserved features among the three classes of viral fusion proteins and offer direction for the future development of broadly active fusion inhibitors.  相似文献   
70.
Recycling of carbon by the photorespiratory pathway involves enzymatic steps in the chloroplast, mitochondria, and peroxisomes. Most of these reactions are essential for plants growing under ambient CO(2) concentrations. However, some disruptions of photorespiratory metabolism cause subtle phenotypes in plants grown in air. For example, Arabidopsis thaliana lacking both of the peroxisomal malate dehydrogenase genes (pmdh1pmdh2) or hydroxypyruvate reductase (hpr1) are viable in air and have rates of photosynthesis only slightly lower than wild-type plants. To investigate how disruption of the peroxisomal reduction of hydroxypyruvate to glycerate influences photorespiratory carbon metabolism we analyzed leaf gas exchange in A. thaliana plants lacking peroxisomal HPR1 expression. In addition, because the lack of HPR1 could be compensated for by other reactions within the peroxisomes using reductant supplied by PMDH a triple mutant lacking expression of both peroxisomal PMDH genes and HPR1 (pmdh1pmdh2hpr1) was analyzed. Rates of photosynthesis under photorespiratory conditions (ambient CO(2) and O(2) concentrations) were slightly reduced in the hpr1 and pmdh1pmdh2hpr1 plants indicating other reactions can help bypass this disruption in the photorespiratory pathway. However, the CO(2) compensation points (Γ) increased under photorespiratory conditions in both mutants indicating changes in photorespiratory carbon metabolism in these plants. Measurements of Γ*, the CO(2) compensation point in the absence of mitochondrial respiration, and the CO(2) released per Rubisco oxygenation reaction demonstrated that the increase in Γ in the hpr1 and pmdh1pmdh2hpr1 plants is not associated with changes in mitochondrial respiration but with an increase in the non-respiratory CO(2) released per Rubisco oxygenation reaction.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号