首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   220篇
  免费   50篇
  2021年   2篇
  2015年   7篇
  2014年   6篇
  2013年   7篇
  2012年   10篇
  2011年   17篇
  2010年   11篇
  2009年   4篇
  2008年   20篇
  2007年   13篇
  2006年   13篇
  2005年   8篇
  2004年   10篇
  2003年   8篇
  2002年   4篇
  2001年   8篇
  2000年   10篇
  1999年   7篇
  1998年   5篇
  1997年   3篇
  1996年   2篇
  1995年   6篇
  1994年   5篇
  1993年   4篇
  1992年   7篇
  1991年   2篇
  1990年   6篇
  1989年   8篇
  1988年   2篇
  1987年   2篇
  1985年   3篇
  1984年   4篇
  1983年   3篇
  1982年   6篇
  1981年   3篇
  1980年   8篇
  1978年   1篇
  1977年   1篇
  1976年   2篇
  1975年   2篇
  1974年   5篇
  1973年   2篇
  1972年   1篇
  1971年   1篇
  1969年   1篇
  1967年   1篇
  1964年   1篇
  1957年   1篇
  1944年   1篇
  1913年   1篇
排序方式: 共有270条查询结果,搜索用时 15 毫秒
11.
Yeoh HH  Badger MR  Watson L 《Plant physiology》1981,67(6):1151-1155
Studies of ribulose-1,5-bisphosphate (RuBP) carboxylase from taxonomically diverse plants show that the enzyme from C(3) and crassulacean acid metabolism pathway species exhibits lower K(m)(CO(2)) values (12-25 micromolar) than does that from C(4) species (28-34 micromolar). RuBP carboxylase from aquatic angiosperms, an aquatic bryophyte, fresh water and marine algae has yielded consistently high K(m)(CO(2)) values (30-70 micromolar), similar in range to that of the enzyme from C(4) terrestrial plants. This variation in K(m)(CO(2)) is discussed in relation to the correlation between the existence of CO(2)-concentrating mechanisms for photosynthesis and the affinity of the enzyme for CO(2). The K(m)(RuBP) of the enzyme from various sources ranges from 10 to 136 micromolar; mean +/- sd = 36 +/- 20 micromolar. This variation in K(m)(RuBP) does not correlate with different photosynthetic pathways, but shows taxonomic patterns. Among the dicotyledons, the enzyme from crassinucellate species exhibits lower K(m)(RuBP) (18 +/- 4 micromolar) than does that from tenuinucellate species (25 +/- 7 micromolar). Among the Poaceae, RuBP carboxylase from Triticeae, chloridoids, andropogonoids, Microlaena, and Tetrarrhena has yielded lower K(m)(RuBP) values (29 +/- 11 micromolar) than has that from other members of the grass family (46 +/- 10 micromolar).  相似文献   
12.
The anaphylatoxin C3a is a potent chemotactic peptide and inflammatory mediator released during complement activation which binds to and activates a G-protein-coupled receptor. Molecular cloning of the C3aR has facilitated studies to identify nonpeptide antagonists of the C3aR. A chemical lead that selectively inhibited the C3aR in a high throughput screen was identified and chemically optimized. The resulting antagonist, N(2)-[(2,2-diphenylethoxy)acetyl]-L-arginine (SB 290157), functioned as a competitive antagonist of (125)I-C3a radioligand binding to rat basophilic leukemia (RBL)-2H3 cells expressing the human C3aR (RBL-C3aR), with an IC(50) of 200 nM. SB 290157 was a functional antagonist, blocking C3a-induced C3aR internalization in a concentration-dependent manner and C3a-induced Ca(2+) mobilization in RBL-C3aR cells and human neutrophils with IC(50)s of 27.7 and 28 nM, respectively. SB 290157 was selective for the C3aR in that it did not antagonize the C5aR or six other chemotactic G protein-coupled receptors. Functional antagonism was not solely limited to the human C3aR; SB 290157 also inhibited C3a-induced Ca(2+) mobilization of RBL-2H3 cells expressing the mouse and guinea pig C3aRS: It potently inhibited C3a-mediated ATP release from guinea pig platelets and inhibited C3a-induced potentiation of the contractile response to field stimulation of perfused rat caudal artery. Furthermore, in animal models, SB 290157, inhibited neutrophil recruitment in a guinea pig LPS-induced airway neutrophilia model and decreased paw edema in a rat adjuvant-induced arthritis model. This selective antagonist may be useful to define the physiological and pathophysiological roles of the C3aR.  相似文献   
13.
Soy protein isolate (SPI) in the diet may inhibit colon tumorigenesis. We examined azoxymethane (AOM)-induced aberrant crypt foci (ACF) in male rats in relation to lifetime, pre-weaning, or post-weaning dietary exposure to SPI and also within the context of fetal alcohol exposure. Pregnant Sprague Dawley rats were fed AIN-93G diets containing casein (20%, the control diet) or SPI (20%) as the sole protein source starting on gestation day 4 (GD 4). Progeny were weaned on postnatal day (PND) 21 to the same diet as their dams and were fed this diet until termination of the experiment at PND 138. Rats received AOM on PND 89 and 96. Lifetime (GD 4 to PND 138) feeding of SPI led to reduced frequency of ACF with 4 or more crypts in the distal colon. Progeny of dams fed SPI only during pregnancy and lactation or progeny fed SPI only after weaning exhibited similarly reduced frequency of large ACF in distal colon. Number of epithelial cells, in the distal colon, undergoing apoptosis was unaffected by diet. SPI reduced weight gain and adiposity, but these were not correlated with fewer numbers of large ACF. Lifetime SPI exposure similarly inhibited development of large ACF in Sprague Dawley rats whose dams were exposed to ethanol during pregnancy. In summary, feeding of SPI to rat dams during pregnancy and lactation suppresses numbers of large ACF in their progeny, implying a long-term or permanent change elicited by the maternal diet. Moreover, results support the use of ACF as an intermediate endpoint for elucidating effects of SPI and its biochemical constituents in colon cancer prevention in rats.  相似文献   
14.
Caspases have been strongly implicated to play an essential role in apoptosis. A critical question regarding the role(s) of these proteases is whether selective inhibition of an effector caspase(s) will prevent cell death. We have identified potent and selective non-peptide inhibitors of the effector caspases 3 and 7. The inhibition of apoptosis and maintenance of cell functionality with a caspase 3/7-selective inhibitor is demonstrated for the first time, and suggests that targeting these two caspases alone is sufficient for blocking apoptosis. Furthermore, an x-ray co-crystal structure of the complex between recombinant human caspase 3 and an isatin sulfonamide inhibitor has been solved to 2.8-A resolution. In contrast to previously reported peptide-based caspase inhibitors, the isatin sulfonamides derive their selectivity for caspases 3 and 7 by interacting primarily with the S(2) subsite, and do not bind in the caspase primary aspartic acid binding pocket (S(1)). These inhibitors blocked apoptosis in murine bone marrow neutrophils and human chondrocytes. Furthermore, in camptothecin-induced chondrocyte apoptosis, cell functionality as measured by type II collagen promoter activity is maintained, an activity considered essential for cartilage homeostasis. These data suggest that inhibiting chondrocyte cell death with a caspase 3/7-selective inhibitor may provide a novel therapeutic approach for the prevention and treatment of osteoarthritis, or other disease states characterized by excessive apoptosis.  相似文献   
15.
The induction of a high-affinity state of the CO2-concentration mechanism was investigated in two cyanobacterial species, Synechococcus sp. strain PCC7002 and Synechococcus sp. strain PCC7942. Cells grown at high CO2 concentrations were resuspended in low-CO2 buffer and illuminated in the presence of carbonic anhydrase for 4 to 10 min until the inorganic C compensation point was reached. Thereafter, more than 95% of a high-affinity CO2-concentration mechanism was induced in both species. Mass-spectrometric analysis of CO2 and HCO3 fluxes indicated that only the affinity of HCO3 transport increased during the fast-induction period, whereas maximum transport activities were not affected. The kinetic characteristics of CO2 uptake remained unchanged. Fast induction of high-affinity HCO3 transport was not inhibited by chloramphenicol, cantharidin, or okadaic acid. In contrast, fast induction of high-affinity HCO3 transport did not occur in the presence of K252a, staurosporine, or genistein, which are known inhibitors of protein kinases. These results show that induction of high-affinity HCO3 transport can occur within minutes of exposure to low-inorganic-C conditions and that fast induction may involve posttranslational phosphorylation of existing proteins rather than de novo synthesis of new protein components.  相似文献   
16.
Flaveria bidentis (L.) Kuntze, a C4 dicot, was genetically transformed with a construct encoding the mature form of tobacco (Nicotiana tabacum L.) carbonic anhydrase (CA) under the control of a strong constitutive promoter. Expression of the tobacco CA was detected in transformant whole-leaf and bundle-sheath cell (bsc) extracts by immunoblot analysis. Whole-leaf extracts from two CA-transformed lines demonstrated 10% to 50% more CA activity on a ribulose-1,5-bisphosphate carboxylase/oxygenase-site basis than the extracts from transformed, nonexpressing control plants, whereas 3 to 5 times more activity was measured in CA transformant bsc extracts. This increased CA activity resulted in plants with moderately reduced rates of CO2 assimilation (A) and an appreciable increase in C isotope discrimination compared with the controls. With increasing O2 concentrations up to 40% (v/v), a greater inhibition of A was found for transformants than for wild-type plants; however, the quantum yield of photosystem II did not differ appreciably between these two groups over the O2 levels tested. The quantum yield of photosystem II-to-A ratio suggested that at higher O2 concentrations, the transformants had increased rates of photorespiration. Thus, the expression of active tobacco CA in the cytosol of F. bidentis bsc and mesophyll cells perturbed the C4 CO2-concentrating mechanism by increasing the permeability of the bsc to inorganic C and, thereby, decreasing the availability of CO2 for photosynthetic assimilation by ribulose-1,5-bisphosphate carboxylase/oxygenase.  相似文献   
17.
Electrostatic phenomena are known to enhance both wind- and insect-mediated pollination, but have not yet been described for nectar-feeding vertebrates. Here we demonstrate that wild Anna''s Hummingbirds (Calypte anna) can carry positive charges up to 800 pC while in flight (mean ± s.d.: 66 ± 129 pC). Triboelectric charging obtained by rubbing an isolated hummingbird wing against various plant structures generated charges up to 700 pC. A metal hummingbird model charged to 400 pC induced bending of floral stamens in four plants (Nicotiana, Hemerocallis, Penstemon, and Aloe spp.), and also attracted falling Lycopodium spores at distances of < 2 mm. Electrostatic forces may therefore influence pollen transfer onto nectar-feeding birds.  相似文献   
18.
Studies in cultured cells have shown that nuclear shape is an important factor influencing nuclear function, and that mechanical forces applied to the cell can directly affect nuclear shape. In a previous study, we demonstrated that stretching of whole mouse subcutaneous tissue causes dynamic cytoskeletal remodeling with perinuclear redistribution of α-actin in fibroblasts within the tissue. We have further shown that the nuclei of these fibroblasts have deep invaginations containing α-actin. In the current study, we hypothesized that tissue stretch would cause nuclear remodeling with a reduced amount of nuclear invagination, measurable as a change in nuclear concavity. Subcutaneous areolar connective tissue samples were excised from 28 mice and randomized to either tissue stretch or no stretch for 30 min, then examined with histochemistry and confocal microscopy. In stretched tissue (vs. non-stretched), fibroblast nuclei had a larger cross-sectional area (P < 0.001), smaller thickness (P < 0.03) in the plane of the tissue, and smaller relative concavity (P < 0.005) indicating an increase in nuclear convexity. The stretch-induced loss of invaginations may have important influences on gene expression, RNA trafficking and/or cell differentiation.  相似文献   
19.
Cytoskeleton-dependent changes in cell shape are well-established factors regulating a wide range of cellular functions including signal transduction, gene expression, and matrix adhesion. Although the importance of mechanical forces on cell shape and function is well established in cultured cells, very little is known about these effects in whole tissues or in vivo. In this study we used ex vivo and in vivo models to investigate the effect of tissue stretch on mouse subcutaneous tissue fibroblast morphology. Tissue stretch ex vivo (average 25% tissue elongation from 10 min to 2 h) caused a significant time-dependent increase in fibroblast cell body perimeter and cross-sectional area (ANOVA, P < 0.01). At 2 h, mean fibroblast cell body cross-sectional area was 201% greater in stretched than in unstretched tissue. Fibroblasts in stretched tissue had larger, "sheetlike" cell bodies with shorter processes. In contrast, fibroblasts in unstretched tissue had a "dendritic" morphology with smaller, more globular cell bodies and longer processes. Tissue stretch in vivo for 30 min had effects that paralleled those ex vivo. Stretch-induced cell body expansion ex vivo was inhibited by colchicine and cytochalasin D. The dynamic, cytoskeleton-dependent responses of fibroblasts to changes in tissue length demonstrated in this study have important implications for our understanding of normal movement and posture, as well as therapies using mechanical stimulation of connective tissue including physical therapy, massage, and acupuncture. mechanotransduction; connective tissue; tensegrity; musculoskeletal manipulations; acupuncture  相似文献   
20.
Animal models are widely used to study cartilage degeneration. Experimental interventions to alter contact mechanics in articular joints may also affect the loads borne by the leg during gait and consequently affect the overall loading experienced in the joint. In this study, force plate analyses were utilized to measure parameters of gait in the rear legs of adult rats following application of a varus loading device that altered loading in the knee. Adult rats were assigned to Control, Sham, or Loaded groups (n≥4/each). Varus loading devices were surgically attached to rats in the Sham and Loaded groups. In the Loaded group, this device applied a controlled compressive overload to the medial compartment of the knee during periods of engagement. Peak ground reaction forces during walking were recorded for each rear leg of each group. Analyses of variance were used to compare outcomes across groups (Control, Sham, and Loaded), leg (contralateral, experimental) and device status (disengaged, engaged) to determine the effects of surgically attaching the device and applying a compressive overload to the joint with the device. The mean peak vertical force in the experimental leg was reduced to 30% in the Sham group in comparison to the contralateral leg and the Control group, indicating an effect of attaching the device to the leg (p<0.01). No differences were found in ground reaction forces between the Sham and Loaded groups with application of compressive overloads with the device. The significant reduction in vertical force due to the surgical attachment of the varus loading device must be considered and accounted for in future studies.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号