首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   935篇
  免费   74篇
  2023年   7篇
  2022年   8篇
  2021年   16篇
  2020年   13篇
  2019年   9篇
  2018年   21篇
  2017年   10篇
  2016年   19篇
  2015年   31篇
  2014年   40篇
  2013年   47篇
  2012年   65篇
  2011年   49篇
  2010年   51篇
  2009年   29篇
  2008年   43篇
  2007年   45篇
  2006年   54篇
  2005年   40篇
  2004年   36篇
  2003年   37篇
  2002年   35篇
  2001年   31篇
  2000年   31篇
  1999年   18篇
  1998年   9篇
  1997年   8篇
  1995年   6篇
  1994年   6篇
  1992年   6篇
  1991年   8篇
  1990年   9篇
  1989年   15篇
  1988年   12篇
  1986年   10篇
  1985年   7篇
  1984年   16篇
  1982年   5篇
  1981年   5篇
  1980年   8篇
  1979年   6篇
  1978年   8篇
  1976年   10篇
  1974年   5篇
  1972年   5篇
  1970年   5篇
  1969年   6篇
  1968年   6篇
  1967年   7篇
  1966年   5篇
排序方式: 共有1009条查询结果,搜索用时 421 毫秒
51.
52.
Both mechanical loading and interleukin-1beta (IL-1beta) are known to regulate metabolic processes in articular cartilage through pathways mediated by nitric oxide ((*)NO) and PGE(2). This study uses a well-characterized model system involving isolated chondrocytes cultured in agarose constructs to test the hypothesis that dynamic compression alters the synthesis of (*)NO and PGE(2) by IL-1beta-stimulated articular chondrocytes. The data presented demonstrate for the first time that dynamic compression counteracts the effects of IL-1beta on articular chondrocytes by suppressing both (*)NO and PGE(2) synthesis. Inhibitor experiments indicated that the dynamic compression-induced inhibition of PGE(2) synthesis and stimulation of proteoglycan synthesis were (*)NO mediated, while compression-induced stimulation of cell proliferation was (*)NO independent. The inhibition of (*)NO and PGE(2) by dynamic compression is a finding of major significance that could contribute to the development of novel strategies for the treatment of cartilage-degenerative disorders.  相似文献   
53.
Tetrahydrobiopterin, the cofactor required for hydroxylation of aromatic amino acids regulates its own synthesis in mammals through feedback inhibition of GTP cyclohydrolase I. This mechanism is mediated by a regulatory subunit called GTP cyclohydrolase I feedback regulatory protein (GFRP). The 2.6 A resolution crystal structure of rat GFRP shows that the protein forms a pentamer. This indicates a model for the interaction of mammalian GTP cyclohydrolase I with its regulator, GFRP. Kinetic investigations of human GTP cyclohydrolase I in complex with rat and human GFRP showed similar regulatory effects of both GFRP proteins.  相似文献   
54.
In neuroendocrine cells, regulated exocytosis is a multistep process that comprises the recruitment and priming of secretory granules, their docking to the exocytotic sites, and the subsequent fusion of granules with the plasma membrane leading to the release of secretory products into the extracellular space. Using bacterial toxins which specially inactivate subsets of G proteins, we were able to demonstrate that both trimeric and monomeric G proteins directly control the late stages of exocytosis in chromaffin cells. Indeed, in secretagogue-stimulated chromaffin cells, the subplasmalemmal actin cytoskeleton undergoes a specific reorganization that is a prerequisite for exocytosis. Our results suggest that a granule-bound trimeric Go protein controls the actin network surrounding secretory granules through a pathway involving the GTPase RhoA and a downstream phosphatidylinositol 4-kinase. Furthermore, the GTPase Cdc42 plays a active role in exocytosis, most likely by providing specific actin structures to the late docking and/or fusion steps. We propose that G proteins tightly control secretion in neuroendocrine cells by coupling the actin cytoskeleton to the sequential steps underlying membrane trafficking at the site of exocytosis. Our data highlight the use of bacterial toxins, which proved to be powerful tools to dissect the exocytotic machinery at the molecular level.  相似文献   
55.
56.
A virulent isolate of Edwardsiella ictaluri (AL-93-75), the causative agent of enteric septicaemia of catfish (ESC), was used to derive a lipopolysaccharide-reduced N-lauroylsarcosine outer-membrane protein (OMP) fraction vaccine. The OMP fraction was analyzed using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and compared to whole-cell lysate, purified lipopolysaccharide (LPS) and a crude cell-wall fraction. The OMP fraction contained less than 2% (W/V) LPS. SDS-PAGE showed that whole cell lysates contained 27 proteins from 107 to 14.3 kDa, whereas OMP contained nine proteins from 97 to 14.3 kDa, LPS contained two proteins at 45 and 37 kDa bands and a smear of bands below 14.3 kDa, and cell wall fraction contained 21 proteins from 97 to 8 kDa. Channel catfish, Ictalurus punctatus, were vaccinated with 12.5 microg/100 microl OMP and immunogenicity was confirmed by subsequent Western blots. Blots showed that 97, 80, and 19 kDa proteins were immunogenic. Rapid enzyme-linked immunosorbent assays (ELISA) demonstrated that OMP produced a weak, but observable antibody response by 21 days post injection. OMP concentrations of 3.13, 6.25, 12.5, 25, and 50 microg/100 microl total protein were tested for protective immunity. Marginal protection by relative percent survival (RPS) was only seen for fish injected with 12.5 microg/100 microl with RPSs between 55-67.5%. A booster dose of 12.5 microg/100 microl OMP did not significantly enhance protection.  相似文献   
57.
In neuroendocrine cells, actin reorganization is a prerequisite for regulated exocytosis. Small GTPases, Rho proteins, represent potential candidates coupling actin dynamics to membrane trafficking events. We previously reported that Cdc42 plays an active role in regulated exocytosis in chromaffin cells. The aim of the present work was to dissect the molecular effector pathway integrating Cdc42 to the actin architecture required for the secretory reaction in neuroendocrine cells. Using PC12 cells as a secretory model, we show that Cdc42 is activated at the plasma membrane during exocytosis. Expression of the constitutively active Cdc42(L61) mutant increases the secretory response, recruits neural Wiskott-Aldrich syndrome protein (N-WASP), and enhances actin polymerization in the subplasmalemmal region. Moreover, expression of N-WASP stimulates secretion by a mechanism dependent on its ability to induce actin polymerization at the cell periphery. Finally, we observed that actin-related protein-2/3 (Arp2/3) is associated with secretory granules and that it accompanies granules to the docking sites at the plasma membrane upon cell activation. Our results demonstrate for the first time that secretagogue-evoked stimulation induces the sequential ordering of Cdc42, N-WASP, and Arp2/3 at the interface between granules and the plasma membrane, thereby providing an actin structure that makes the exocytotic machinery more efficient.  相似文献   
58.
Virus-specific CD4(+) T-cell function is thought to play a central role in induction and maintenance of effective CD8(+) T-cell responses in experimental animals or humans. However, the reasons that diminished proliferation of human immunodeficiency virus (HIV)-specific CD4(+) T cells is observed in the majority of infected patients and the role of these diminished responses in the loss of control of replication during the chronic phase of HIV infection remain incompletely understood. In a cohort of 15 patients that were selected for particularly strong HIV-specific CD4(+) T-cell responses, the effects of viremia on these responses were explored. Restriction of HIV replication was not observed during one to eight interruptions of antiretroviral therapy in the majority of patients (12 of 15). In each case, proliferative responses to HIV antigens were rapidly inhibited during viremia. The frequencies of cells that produce IFN-gamma in response to Gag, Pol, and Nef peptide pools were maintained during an interruption of therapy. In a subset of patients with elevated frequencies of interleukin-2 (IL-2)-producing cells, IL-2 production in response to HIV antigens was diminished during viremia. Addition of exogenous IL-2 was sufficient to rescue in vitro proliferation of DR0101 class II Gag or Pol tetramer(+) or total-Gag-specific CD4(+) T cells. These observations suggest that, during viremia, diminished in vitro proliferation of HIV-specific CD4(+) T cells is likely related to diminished IL-2 production. These results also suggest that relatively high frequencies of HIV-specific CD4(+) T cells persist in the peripheral blood during viremia, are not replicatively senescent, and proliferate when IL-2 is provided exogenously.  相似文献   
59.
Bves is a protein expressed in cells of the developing coronary vascular system, specifically in the proepicardium, migrating epithelial epicardium, delaminated vasculogenic mesenchyme and vascular smooth muscle cells. Here, we show that Bves protein undergoes a dynamic subcellular redistribution during coronary vessel development. Bves is a membrane protein with three predicted transmembrane helices, an extracellular C terminus and an intracellular N terminus, and is confined to the lateral membrane compartment of epithelial cells. When epicardial cells are dissociated into single cells in vitro, Bves accumulates in a perinuclear region until cells make contact, at which time Bves is trafficked to the cell membrane. Bves accumulates at points of cell/cell contact, such as filopodia and cell borders, before the appearance of E-cadherin, suggesting an early role in cell adhesion. While Bves shares no homology with any known adhesion molecule, transfection of Bves into L-cells readily confers adhesive behavior to these cells. Finally, Bves antibodies inhibit epithelial migration of vasculogenic cells from the proepicardium. This study provides direct evidence that Bves is a novel cell adhesion molecule and suggests a role for Bves in coronary vasculogenesis.  相似文献   
60.
Purification of xylulose 5-phosphate phosphoketolase (XpkA), the central enzyme of the phosphoketolase pathway (PKP) in lactic acid bacteria, and cloning and sequence analysis of the encoding gene, xpkA, from Lactobacillus pentosus MD363 are described. xpkA encodes a 788-amino-acid protein with a calculated mass of 88,705 Da. Expression of xpkA in Escherichia coli led to an increase in XpkA activity, while an xpkA knockout mutant of L. pentosus lost XpkA activity and was not able to grow on energy sources that are fermented via the PKP, indicating that xpkA encodes an enzyme with phosphoketolase activity. A database search revealed that there are high levels of similarity between XpkA and a phosphoketolase from Bifidobacterium lactis and between XpkA and a (putative) protein present in a number of evolutionarily distantly related organisms (up to 54% identical residues). Expression of xpkA in L. pentosus was induced by sugars that are fermented via the PKP and was repressed by glucose mediated by carbon catabolite protein A (CcpA) and by the mannose phosphoenolpyruvate phosphotransferase system. Most of the residues involved in correct binding of the cofactor thiamine pyrophosphate (TPP) that are conserved in transketolase, pyruvate decarboxylase, and pyruvate oxidase were also conserved at a similar position in XpkA, implying that there is a similar TPP-binding fold in XpkA.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号