首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   124篇
  免费   2篇
  2022年   1篇
  2019年   1篇
  2018年   2篇
  2017年   1篇
  2016年   3篇
  2015年   3篇
  2014年   2篇
  2013年   7篇
  2012年   3篇
  2011年   6篇
  2010年   6篇
  2009年   7篇
  2008年   12篇
  2007年   9篇
  2006年   6篇
  2005年   5篇
  2004年   6篇
  2003年   7篇
  2002年   5篇
  2001年   4篇
  2000年   2篇
  1998年   2篇
  1996年   4篇
  1995年   1篇
  1994年   2篇
  1991年   1篇
  1990年   2篇
  1988年   1篇
  1987年   1篇
  1986年   3篇
  1985年   2篇
  1982年   2篇
  1979年   1篇
  1977年   1篇
  1976年   1篇
  1974年   2篇
  1966年   1篇
  1916年   1篇
排序方式: 共有126条查询结果,搜索用时 31 毫秒
11.
Russian Journal of Genetics - Genetic diversity of diploid grass Ae. tauschii Coss (2n = 2x = 14, DD), the D-genome progenitor of common wheat, was assessed using fluorescence in situ hybridization...  相似文献   
12.
Zelenin  A. V.  Badaeva  E. D.  Muravenko  O. V. 《Molecular Biology》2001,35(3):285-293
The success in complete sequencing of small genomes and development of new technologies that markedly speed up the cloning and sequencing processes open the way to intense development of plant genomics and complete sequencing of DNA of some species. It is assumed that success in plant genomics will result in revolutionary changes in biotechnology and plant breeding. However, the enormous size of genomes (tens of billions of base pairs), their extraordinary abundance of repetitive sequences, and allopolyploidy (the presence in a nucleus of several related but not identical genomes) force us to think that only few basic plant species will undergo complete sequencing, whereas genome investigations in other species will follow the principles of comparative genomics. By the present time, sequencing of the Arabidopsis genome (125 Mbp) is completed and that of the rice genome (about 430 Mbp) is close to its end. Studying the genomes of other plants, including economically valuable ones, already began on the basis of these works. The peculiarities of plant genomes make extraordinarily important our detailed knowledge on plant chromosomes which, in its turn, calls for expansion of research in this direction and development of new chromosome technologies, including the DNA-sparing methods of high-resolution banding.  相似文献   
13.
Cytogenetic analysis was employed in studying the cause of generation of fertile awned forms in the progeny of plants, which were selected from a speltoid somaclonal wheat line monosomic for chromosome 5A (2n = 41 = 20II + I), had speltoid spikes, and were reproduced by self pollination. On cytogenetic and genetic evidence, chromosome 5A was eliminated and the copy number of chromosome 5B increased in the plants examined. The appearance of an extra chromosome 5B is probably caused by nondisjunction of bivalent 5B in the presence of a telocentric originating from the long arm of chromosome 5A. A difference in meiotic segregation was observed for univalent chromosomes 5A and 5B.  相似文献   
14.
Badaeva ED 《Genetika》2002,38(6):799-811
Four tetraploid (Aegilops ovata, Ae. biuncialis, Ae. columnaris, and Ae. triaristata) and one hexaploid (Ae. recta) species of the U-genome cluster were studied using C-banding technique. All species displayed broad C-banding polymorphism and high frequency of chromosomal rearrangements. Chromosomal rearrangements were represented by paracentric inversions and intragenomic and intergenomic translocations. We found that the processes of intraspecific divergence of Ae. ovata, Ae. biuncialis, and Ae. columnaris were probably associated with introgression of genetic material from other species. The results obtained confirmed that tetraploid species Ae. ovata and Ae. biuncialis occurred as a result of hybridization of a diploid Ae. umbellulata with Ae. comosa and Ae. heldreichii, respectively. The dissimilarity of the C-banding patterns of several chromosomes of these tetraploid species and their ancestral diploid forms indicated that chromosomal aberrations might have taken place during their speciation. Significant differences of karyotype structure, total amount and distribution of C-heterochromatin found between Ae. columnaris and Ae. triaristata, on the one hand, and Ae. ovata and Ae. biuncialis, on the other, evidenced in favor of different origin of these groups of species. In turn, similarity of the C-banding patterns of Ae. columnaris and Ae. triaristata chromosomes suggested that they were derived from a common ancestor. A diploid species Ae. umbellulata was the U-genome donor of Ae. columnaris and Ae. triaristata; however, the donor of the second genome of these species was not determined. We assumed that these tetraploid species occurred as a result of introgressive hybridization. Similarity of the C-banding patterns of chromosomes of Ae. recta and its parental species Ae. triaristata and Ae. uniaristata indicated that the formation of the hexaploid form was not associated with large modifications of the parental genomes.  相似文献   
15.
16.
Ninety-four lines of Triticum dicoccum isolated from 86 wheat accessions from Vavilov All-Russia Research Institute of Plant Industry (VIR, Russia) and INRA (Clermont-Ferrand, France) germ-plasm collections were studied using C-banding technique. Visual comparison of karyotypes of different accessions was performed to establish genetic relationships and evaluate features inherent for ecological-geographical groups. The level of C-banding polymorphism in the whole sample of tetraploid emmer proved to be relatively low. The diversity within groups was higher than the differences between them. The material studied contained 39 lines carrying 16 different types of chromosomal rearrangements including single and multiple translocations and inversions. The level of translocation polymorphism was comparable with that detected earlier for polyploid wheat species. The frequencies of individual translocation types varied from 18 (T7A:5B) to 1 (nine types). Analysis of the distribution of the most frequent translocations 7A:5B suggested that it has significant adaptive value on the territory of Europe. Similarity of the C-banding patterns of European emmer and the accessions with the same translocation of the Asian origin points to their possible common origin. The occurrence of the same translocation in several T. dicoccoides accessions from Syria and Lebanon may indicate that such forms of wild emmer could have taken part in the origin of cultivate emmer from Western Europe. Similarity of the C-banding patterns of some chromosomes of European emmer and spelt could serve as an indirect evidence of their close genetic relationships.  相似文献   
17.
C-banding of chromosomes and in situ hybridization with the probes pTa71 and pTa794 were used for a comparative cytogenetic study of the three tetraploid oat species with the A and C genomes: Avena insularis, A. magna, and A. murphyi. These species were similar in the structure and C-banding patterns of several chromosomes as well as in the location of the loci 5S rRNA genes and major NOR sites; however, they differed in the number and localization of minor 45S rDNA loci as well as in the morphology and distribution of heterochromatin in some chromosomes. According to the data obtained, A. insularis is closer to A. magna, whereas A. murphyi is somewhat separated from these two species. Presumably, all the three studied species originated from the same tetraploid ancestor, and their divergence is connected with various species-specific chromosome rearrangements. The evolution of A. murphyi is likely to have occurred independently of the other two species.  相似文献   
18.
Chromosomal rearrangements in wheat: their types and distribution.   总被引:1,自引:0,他引:1  
Four hundred and sixty polyploid wheat accessions and 39 triticale forms from 37 countries of Europe, Asia, and USA were scored by C-banding for the presence of translocations. Chromosomal rearrangements were detected in 70 of 208 accessions of tetraploid wheat, 69 of 252 accessions of hexaploid wheat, and 3 of 39 triticale forms. Altogether, 58 types of major chromosomal rearrangements were identified in the studied material; they are discussed relative to 11 additional translocation types described by other authors. Six chromosome modifications of unknown origin were also observed. Among all chromosomal aberrations identified in wheat, single translocations were the most frequent type (39), followed by multiple rearrangements (9 types), pericentric inversions (9 types), and paracentric inversions (3 types). According to C-banding analyses, the breakpoints were located at or near the centromere in 60 rearranged chromosomes, while in 52 cases they were in interstitial chromosome regions. In the latter case, translocation breakpoints were often located at the border of C-bands and the euchromatin region or between two adjacent C-bands; some of these regions seem to be translocation "hotspots". Our results and data published by other authors indicate that the B-genome chromosomes are involved in translocations most frequently, followed by the A- and D-genome chromosomes; individual chromosomes also differ in the frequencies of translocations. Most translocations were detected in 1 or 2 accessions, and only 11 variants showed relatively high frequencies or were detected in wheat varieties of different origins or from different species. High frequencies of some translocations with a very restricted distribution could be due to a "bottleneck effect". Other types seem to occur independently and their broad distribution can result from selective advantages of rearranged genotypes in diverse environmental conditions. We found significant geographic variation in the spectra and frequencies of translocation in wheat: the highest proportions of rearranged genotypes were found in Central Asia, the Middle East, Northern Africa, and France. A low proportion of aberrant genotypes was characteristic of tetraploid wheat from Transcaucasia and hexaploid wheat from Middle Asia and Eastern Europe.  相似文献   
19.
20.

Background

The ability to perform quantitative studies using isotope tracers and metabolic flux analysis (MFA) is critical for detecting pathway bottlenecks and elucidating network regulation in biological systems, especially those that have been engineered to alter their native metabolic capacities. Mathematically, MFA models are traditionally formulated using separate state variables for reaction fluxes and isotopomer abundances. Analysis of isotope labeling experiments using this set of variables results in a non-convex optimization problem that suffers from both implementation complexity and convergence problems.

Results

This article addresses the mathematical and computational formulation of 13C MFA models using a new set of variables referred to as fluxomers. These composite variables combine both fluxes and isotopomer abundances, which results in a simply-posed formulation and an improved error model that is insensitive to isotopomer measurement normalization. A powerful fluxomer iterative algorithm (FIA) is developed and applied to solve the MFA optimization problem. For moderate-sized networks, the algorithm is shown to outperform the commonly used 13CFLUX cumomer-based algorithm and the more recently introduced OpenFLUX software that relies upon an elementary metabolite unit (EMU) network decomposition, both in terms of convergence time and output variability.

Conclusions

Substantial improvements in convergence time and statistical quality of results can be achieved by applying fluxomer variables and the FIA algorithm to compute best-fit solutions to MFA models. We expect that the fluxomer formulation will provide a more suitable basis for future algorithms that analyze very large scale networks and design optimal isotope labeling experiments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号