首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   147篇
  免费   21篇
  2022年   1篇
  2020年   1篇
  2018年   3篇
  2017年   3篇
  2016年   4篇
  2015年   5篇
  2014年   4篇
  2013年   4篇
  2012年   7篇
  2011年   9篇
  2010年   6篇
  2009年   1篇
  2008年   7篇
  2007年   11篇
  2006年   5篇
  2005年   12篇
  2004年   6篇
  2003年   4篇
  2002年   1篇
  2001年   10篇
  2000年   3篇
  1999年   3篇
  1998年   10篇
  1997年   5篇
  1996年   5篇
  1995年   5篇
  1994年   6篇
  1993年   5篇
  1992年   3篇
  1991年   2篇
  1990年   5篇
  1989年   5篇
  1988年   1篇
  1986年   2篇
  1985年   2篇
  1981年   1篇
  1977年   1篇
排序方式: 共有168条查询结果,搜索用时 31 毫秒
61.
The type IIa Na+-Pi cotransporter (NaPi-IIa) and the Na+/H+ exchanger regulatory factor-1 (NHERF1) colocalize in the apical membrane of proximal tubular cells. Both proteins interact in vitro. Herein the interaction between NaPi-IIa and NHERF1 is further documented on the basis of coimmunoprecipitation and co-pull-down assays. NaPi-IIa is endocytosed and degraded in lysosomes upon parathyroid hormone (PTH) treatment. To investigate the effect of PTH on the NaPi-IIa-NHERF1 association, we first compared the localization of both proteins after PTH treatment. In mouse proximal tubules and OK cells, NaPi-IIa was removed from the apical membrane after hormonal treatment; however, NHERF1 remained at the membrane. Moreover, PTH treatment led to degradation of NaPi-IIa without changes in the amount of NHERF1. The effect of PTH on the NaPi-IIa-NHERF1 interaction was further studied using coimmunoprecipitation. PTH treatment reduced the amount of NaPi-IIa coimmunoprecipitated with NHERF antibodies. PTH-induced internalization of NaPi-IIa requires PKA and PKC; therefore, we next analyzed whether PTH induces changes in the phosphorylation state of either partner. NHERF1 was constitutively phosphorylated. Moreover, in mouse kidney slices, PTH induced an increase in NHERF1 phosphorylation; independent activation of PKA or PKC also resulted in increased phosphorylation of NHERF1 in kidney slices. However, NaPi-IIa was not phosphorylated either basally or after exposure to PTH. Our study supports an interaction between NHERF1 and NaPi-IIa on the basis of their brush-border membrane colocalization and in vitro coimmunoprecipitation/co-pull-down assays. Furthermore, PTH weakens this interaction as evidenced by different in situ and in vivo behavior. The PTH effect takes place in the presence of increased phosphorylation of NHERF1. proximal tubule; opossum kidney cells; phosphorylation; endocytosis  相似文献   
62.
63.
H Li  A Bacic    S M Read 《Plant physiology》1997,114(4):1255-1265
In pollen tubes of Nicotiana alata, a membrane-bound, Ca(2+)-independent callose synthase (CalS) is responsible for the biosynthesis of the (1,3)-beta-glucan backbone of callose, the main cell wall component. Digitonin increases CalS activity 3- to 4-fold over a wide range of concentrations, increasing the maximum initial velocity without altering the Michaelis constant for UDP-glucose. The CalS activity that requires digitonin for assay (the latent CalS activity) is not inhibited by the membrane-impermeant, active site-directed reagent UDP-pyridoxal when the reaction is conducted in the absence of digitonin. This is consistent with digitonin increasing CalS activity by the permeabilization of membrane vesicles. A second group of detergents, including 3-[(3-cholamidopropyl)dimethylammonio]-1-propane-sulfonate (CHAPS), Zwittergent 3-16, and 1-alpha-lysolecithin, activate pollen tube CalS 10- to 15-fold, but only over a narrow range of concentrations just below their respective critical micellar concentrations. This activation could not be attributed to any particular chemical feature of these detergents. CHAPS increases maximum initial velocity and decreases the Michaelis constant for UDP-glucose and activates CalS even in the presence of permeabilizing concentrations of digitonin. Inhibition studies with UDP-pyridoxal indicate that activation by CHAPS occurs by recruitment of previously inactive CalS molecules to the pool of active enzyme. The activation of pollen tube CalS by these detergents therefore resembles activation of the enzyme by trypsin.  相似文献   
64.
Self-incompatibility is a mechanism developed by many plantsto prevent inbreeding. The products of the selfincompatibility(S)-locus in the styles of solanaceous plants are a series ofglycoproteins with ribonuclease activity. In this study, wereport on the N-glycans from the stylar selfincompatibilityS3- and S6-ribonucleases of Nicotiana alata, which were enzymicallyreleased and fractionated by high-pH anion-exchange HPLC. Atotal of 14 N-glycans were identified and characterized by acombination of electrospray-ionization mass-spectrometry, 1H-NMRspectroscopy, chemical degradation, and methylation analyses.This pattern of N-glycosylation is much more complex than thatpreviously found on the N.alata S1- and S2-RNases each of whichcontained only four N-glycans. N-glycan Nicotiana alata ribonuclease selfincompatibility  相似文献   
65.
One of the virulence factors of the protozoan parasite Leishmaniamajor is the surface glycoconjugate, lipophosphoglycan (LPG).A Ricin-resistant mutant of L.major was generated and characterisedwith respect to its virulence in mice and the structure andexpression of LPG. The LPG from this mutant (1F6-B5) retainedthe tripartite structure of wild-type LPG, comprising a glycosylphosphatidylinositol(GPI) anchor linked to a phosphorylated disaccharide backboneterminating in a nonreducing neutral oligosaccharide cap. Thestructure of the GPI anchor and the major capping oligosaccharidewere identical to wild-type LPG. However, there were variationsin the number of phosphorylated repeats (PO4-6Gal(ß1-4)Man(  相似文献   
66.
Arabinogalactanproteins (AGPs) are proteoglycans of the extracellular matrix o f most plants. Since the late 1980s, AGPs have attracted widespread attention from plant biologists following reports of their involvement in plant development. In particular, the use of monoclonal antibodies to carbohydrate epitopes of AGPs has demonstrated stage- and tissue-specificity and has led to suggestions that they are involved in tissue morphogenesis. The recent cloning of the genes for several AGP protein backbones allows us to consider new strategies to address their function. Here, we summarize our knowledge of AGPs and consider parallels with animal proteoglycans as a possible framework for future work.  相似文献   
67.
Self-incompatibility RNases (S-RNases) are an allelic series of style glycoproteins associated with rejection of self-pollen in solanaceous plants. The nucleotide sequences of S-RNase alleles from several genera have been determined, but the structure of the gene products has only been described for those from Nicotiana alata. We report on the N-glycan structures and the disulfide bonding of the S3-RNase from wild tomato (Lycopersicon peruvianum) and use this and other information to construct a model of this molecule. The S3-RNase has a single N-glycosylation site (Asn-28) to which one of three N-glycans is attached. S3-RNase has seven Cys residues; six are involved in disulfide linkages (Cys-16-Cys-21, Cys-46-Cys-91, and Cys-166-Cys-177), and one has a free thiol group (Cys-150). The disulfide-bonding pattern is consistent with that observed in RNase Rh, a related RNase for which radiographic-crystallographic information is available. A molecular model of the S3-RNase shows that four of the most variable regions of the S-RNases are clustered on one surface of the molecule. This is discussed in the context of recent experiments that set out to determine the regions of the S-RNase important for recognition during the self-incompatibility response.  相似文献   
68.
This paper reports the isolation of cDNAs encoding the protein backbone of two arabinogalactan-proteins (AGPs), one from pear cell suspension cultures (AGP Pc 2) and the other from suspension cultures of Nicotiana alata (AGP Na 2). The proteins encoded by these cDNAs are quite different from the 'classical' AGP backbones described previously for AGPs isolated from pear suspension cultures and extracts of N. alata styles. The cDNA for AGP Pc 2 encodes a 294 amino acid protein, of which a relatively short stretch (35 amino acids) is Hyp/Pro rich; this stretch is flanked by sequences which are dominated by Asn residues. Asn residues are not a feature of the 'classical' AGP backbones in which Hyp/Pro, Ser, Ala and Thr account for most of the amino acids. The cDNA for AGP Na 2 encodes a 437 amino acid protein, which contains two distinct domains: one rich in Hyp/Pro, Ser, Ala, Thr and the other rich in Asn, Tyr and Ser. The composition and sequence of the Pro-rich domain resembles that of the 'classical' AGP backbone. The Asn-rich domains of the two cDNAs described have no sequence similarity; in both cases they are predicted to be processed to give a mature backbone with a composition similar to that of the 'classical' AGPs. The study shows that different AGPs can differ in the amino acid sequence in the protein backbone, as well as the composition and sequence of the arabinogalactan side-chains. It also shows that differential expression of genes encoding AGP protein backbones, as well as differential glycosylation, can contribute to the tissue specificity of AGPs.  相似文献   
69.
H Du  R J Simpson  R L Moritz  A E Clarke    A Bacic 《The Plant cell》1994,6(11):1643-1653
Arabinogalactan-proteins (AGPs) from the styles of Nicotiana alata were isolated by ion exchange and gel filtration chromatography. After deglycosylation by anhydrous hydrogen fluoride, the protein backbones were fractionated by reversed-phase HPLC. One of the protein backbones, containing mainly hydroxyproline, alanine, and serine residues (53% of total residues), was digested with proteases, and the peptides were isolated and sequenced. This sequence information allowed the cloning of a 712-bp cDNA, AGPNa1. AGPNa1 encodes a 132-amino acid protein with three domains: an N-terminal secretion signal sequence, which is cleaved from the mature protein; a central sequence, which contains most of the hydroxyproline/proline residues; and a C-terminal hydrophobic region. AGPNa1 is expressed in many tissues of N. alata and related species. The arrangement of domains and amino acid composition of the AGP encoded by AGPNa1 are similar to that of an AGP from pear cell suspension culture filtrate, although the only sequence identity is at the N termini of the mature proteins.  相似文献   
70.
A summary of recent work on molecular aspects of self-incompatibility in Nicotiana alata is presented. The amino acid sequences of style proteins corresponding to different S-alleles of N. alata have a high level of homology in some regions and are variable in other regions. The regions of homology include N-terminal sequences as well as most of the glycosylation sites and cysteine residues. The glycosyl substituents may consist of a number of glycoforms. The isolated style S-glycoproteins inhibit in vitro growth of pollen tubes. The S-glycoproteins tested inhibited the growth of pollen of several S-genotypes, and there was some specificity in the interaction. Heat treatment of the isolated S-glycoproteins dramatically increased their activity as inhibitors of pollen tube growth, although the specificity in the interaction was lost. The nature of the S-allele products in pollen is not yet established.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号