首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2236篇
  免费   117篇
  2023年   16篇
  2022年   28篇
  2021年   45篇
  2020年   27篇
  2019年   27篇
  2018年   55篇
  2017年   46篇
  2016年   56篇
  2015年   93篇
  2014年   126篇
  2013年   133篇
  2012年   185篇
  2011年   142篇
  2010年   101篇
  2009年   95篇
  2008年   134篇
  2007年   98篇
  2006年   124篇
  2005年   108篇
  2004年   75篇
  2003年   78篇
  2002年   69篇
  2001年   49篇
  2000年   41篇
  1999年   38篇
  1998年   21篇
  1997年   13篇
  1996年   11篇
  1995年   19篇
  1994年   6篇
  1993年   14篇
  1992年   22篇
  1991年   19篇
  1990年   23篇
  1989年   25篇
  1988年   15篇
  1987年   19篇
  1986年   25篇
  1985年   8篇
  1984年   7篇
  1983年   13篇
  1982年   10篇
  1981年   14篇
  1980年   7篇
  1979年   7篇
  1978年   6篇
  1977年   10篇
  1975年   6篇
  1970年   5篇
  1969年   6篇
排序方式: 共有2353条查询结果,搜索用时 31 毫秒
61.
This paper describes a biophysical investigation of residual mobility in complexes of bovine carbonic anhydrase II (BCA) and para-substituted benzenesulfonamide ligands with chains of 1–5 glycine subunits, and explains the previously observed increase in entropy of binding with chain length. The reported results represent the first experimental demonstration that BCA is not the rigid, static globulin that has been typically assumed, but experiences structural fluctuations upon binding ligands. NMR studies with 15N-labeled ligands demonstrated that the first glycine subunit of the chain binds without stabilization or destabilization by the more distal subunits, and suggested that the other glycine subunits of the chain behave similarly. These data suggest that a model based on ligand mobility in the complex cannot explain the thermodynamic data. Hydrogen/deuterium exchange studies provided a global estimate of protein mobility and revealed that the number of exchanged hydrogens of BCA was higher when the protein was bound to a ligand with five glycine subunits than when bound to a ligand with only one subunit, and suggested a trend of increasing number of exchanged hydrogens with increasing chain length of the BCA-bound ligand, across the series. These data support the idea that the glycine chain destabilizes the structure of BCA in a length-dependent manner, causing an increase in BCA mobility. This study highlights the need to consider ligand-induced mobility of even “static” proteins in studies of protein-ligand binding, including rational ligand design approaches.  相似文献   
62.
63.
Molecular Biology Reports - Promoter methylation mediated silencing of tumor suppressor genes plays an important role in the tumorigenesis of colorectal carcinoma (CRC). Tumor suppressor gene,...  相似文献   
64.
Abstract

With an endeavor to develop novel curcumin analogs as potential anti-cancer agents, we designed and synthesized a series of Knoevenagel condensates by clubbing pyrazole carbaldehydes at the active methylene carbon atom of the curcumin backbone. Molecular docking studies were carried out to target the proposed derivatives on human kinase β (IKKβ), a potential anti-cancer target. The chloro derivative displayed five hydrogen bond interactions with a docking score of ?11.874?kcal/mol higher than curcumin (docking score =??7.434?kcal/mol). This was supported by the fact that the propellant shaped derivatives fitted aptly into the binding pocket. Molecular simulations studies were also conducted on the lead molecule and the results figured out that the stable complexes were developed as the minimal deviations per residue of protein within the range of 0.11–0.92 Å. The screened compounds were synthesized, characterized and evaluated in vitro for cytotoxicity against cervical cancer cell line, HeLa using standard cell proliferation assay. Chloro derivative and bromo analog demonstrated IC50 (half maximal inhibitory concentration) value of 14.2 and 18.6 µg/ml, respectively, significantly lower than 42.4 µg/ml of curcumin and higher than 0.008 µg/ml of paclitaxel. Induction of apoptosis was evaluated in the terms of cleavage of caspase-3 enzyme and they also exhibited 69.6 and 65.4% of apoptosis significantly higher than 19.9% induced by curcumin. In conclusion, chloro and bromo derivatives must be evaluated under a set of stringent in vitro and in vivo parameters for translating in to a clinically viable product.

Communicated by Ramaswamy H. Sarma  相似文献   
65.
66.
The linear chromosome of Streptomyces coelicolor contains two paralogous ssb genes, ssbA and ssbB. Following mutational analysis, we concluded that ssbA is essential, whereas ssbB plays a key role in chromosome segregation during sporulation. In the ssbB mutant, ∼30% of spores lacked DNA. The two ssb genes were expressed differently; in minimal medium, gene expression was prolonged for both genes and significantly upregulated for ssbB. The ssbA gene is transcribed as part of a polycistronic mRNA from two initiation sites, 163 bp and 75 bp upstream of the rpsF translational start codon. The ssbB gene is transcribed as a monocistronic mRNA, from an unusual promoter region, 73 bp upstream of the AUG codon. Distinctive DNA-binding affinities of single-stranded DNA-binding proteins monitored by tryptophan fluorescent quenching and electrophoretic mobility shift were observed. The crystal structure of SsbB at 1.7 Å resolution revealed a common OB-fold, lack of the clamp-like structure conserved in SsbA and previously unpublished S-S bridges between the A/B and C/D subunits. This is the first report of the determination of paralogous single-stranded DNA-binding protein structures from the same organism. Phylogenetic analysis revealed frequent duplication of ssb genes in Actinobacteria, whereas their strong retention suggests that they are involved in important cellular functions.  相似文献   
67.
Abstract

The pre-penetration and infection process of Colletotrichum dematium on mulberry leaf was investigated by scanning electron microscope. Conidia produced on germination appressoria directly or at the end of short germ tubes. Appressoria were formed mostly over cuticle, but sometimes over stomata also. At 72 h post-inoculation, an extensive network of sub-cuticular runner hyphae (RH) was produced. The RH were traceable by the cuticular bulgings on leaf surface. The RH emerged to leaf surface through ruptured cuticle to form secondary infection hyphae (SIH). The SIH re-entered the leaf tissue by sending penetration branches through stomata. Conidia were formed singly on short conidiophores from the RH and SIH, at short intervals. The conidia developed on RH were exposed to leaf surface through ruptured cuticle. Some times conidia were released through stomata also. The RH and SIH had thick knots from which hyphal branches and conidia were developed. Definite acervuli were not developed.  相似文献   
68.
69.
In the present investigation, the polysaccharide/mucilage from waste of Abelmoscus esculentus by modification in hot extraction using two different solvents (Acetone, Methanol) were extracted, characterized and further compared with seaweed polysaccharide for their potential applications. The percentage yield, emulsifying capacity and swelling index of this mucilage were determined. The macro algae and okra waste, gave high % yield (22.2% and 8.6% respectively) and good emulsifying capacity (EC% = 52.38% and 54.76% respectively) with acetone, compared to methanol (11.3% and 0.28%; EC% = 50%) (PH = 7) while swelling index was greater with methanol than acetone extracts respectively. The infrared (I.R.) spectrum of the samples was recorded to investigate the chemical structure of mucilage. Thermal analysis of the mucilage was done with TGA (Thermal Gravimetric Analyzer) and DSC (Differential Scanning Calorimeter) which showed both okra and algal polysaccharide were thermostable hydrogels.  相似文献   
70.
β-Glucosidase 2 (GBA2) is an enzyme that cleaves the membrane lipid glucosylceramide into glucose and ceramide. The GBA2 gene is mutated in genetic neurological diseases (hereditary spastic paraplegia and cerebellar ataxia). Pharmacologically, GBA2 is reversibly inhibited by alkylated imino sugars that are in clinical use or are being developed for this purpose. We have addressed the ambiguity surrounding one of the defining characteristics of GBA2, which is its sensitivity to inhibition by conduritol B epoxide (CBE). We found that CBE inhibited GBA2, in vitro and in live cells, in a time-dependent fashion, which is typical for mechanism-based enzyme inactivators. Compared with the well characterized impact of CBE on the lysosomal glucosylceramide-degrading enzyme (glucocerebrosidase, GBA), CBE inactivated GBA2 less efficiently, due to a lower affinity for this enzyme (higher KI) and a lower rate of enzyme inactivation (kinact). In contrast to CBE, N-butyldeoxygalactonojirimycin exclusively inhibited GBA2. Accordingly, we propose to redefine GBA2 activity as the β-glucosidase that is sensitive to inhibition by N-butyldeoxygalactonojirimycin. Revised as such, GBA2 activity 1) was optimal at pH 5.5–6.0; 2) accounted for a much higher proportion of detergent-independent membrane-associated β-glucosidase activity; 3) was more variable among mouse tissues and neuroblastoma and monocyte cell lines; and 4) was more sensitive to inhibition by N-butyldeoxynojirimycin (miglustat, Zavesca®), in comparison with earlier studies. Our evaluation of GBA2 makes it possible to assess its activity more accurately, which will be helpful in analyzing its physiological roles and involvement in disease and in the pharmacological profiling of monosaccharide mimetics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号