首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   535篇
  免费   36篇
  2024年   1篇
  2023年   5篇
  2022年   12篇
  2021年   25篇
  2020年   23篇
  2019年   35篇
  2018年   18篇
  2017年   17篇
  2016年   18篇
  2015年   26篇
  2014年   34篇
  2013年   31篇
  2012年   50篇
  2011年   56篇
  2010年   22篇
  2009年   26篇
  2008年   34篇
  2007年   28篇
  2006年   28篇
  2005年   19篇
  2004年   15篇
  2003年   12篇
  2002年   18篇
  2001年   1篇
  1999年   2篇
  1997年   1篇
  1995年   1篇
  1994年   2篇
  1993年   2篇
  1989年   1篇
  1988年   1篇
  1986年   1篇
  1984年   1篇
  1968年   2篇
  1967年   1篇
  1966年   1篇
  1965年   1篇
排序方式: 共有571条查询结果,搜索用时 15 毫秒
61.
Lymphangiogenic cytokines such as vascular endothelial growth factor-C (VEGF-C) are critically required for lymphatic regeneration; however, in some circumstances, lymphatic function is impaired despite normal or elevated levels of these cytokines. The recent identification of anti-lymphangiogenic molecules such as interferon-γ (IFN-γ), transforming growth factor-β1, and endostatin has led us to hypothesize that impaired lymphatic function may represent a dysregulated balance in the expression of pro/anti-lymphangiogenic stimuli. We observed that nude mice have significantly improved lymphatic function compared with wild-type mice in a tail model of lymphedema. We show that gradients of lymphatic fluid stasis regulate the expression of lymphangiogenic cytokines (VEGF-A, VEGF-C, and hepatocyte growth factor) and that paradoxically the expression of these molecules is increased in wild-type mice. More importantly, we show that as a consequence of T-cell-mediated inflammation, these same gradients also regulate expression patterns of anti-lymphangiogenic molecules corresponding temporally and spatially with impaired lymphatic function in wild-type mice. We show that neutralization of IFN-γ significantly increases inflammatory lymph node lymphangiogenesis independently of changes in VEGF-A or VEGF-C expression, suggesting that alterations in the balance of pro- and anti-lymphangiogenic cytokine expression can regulate lymphatic vessel formation. In conclusion, we show that gradients of lymphatic fluid stasis regulate not only the expression of pro-lymphangiogenic cytokines but also potent suppressors of lymphangiogenesis as a consequence of T-cell inflammation and that modulation of the balance between these stimuli can regulate lymphatic function.  相似文献   
62.
Vascular endothelial growth factor (VEGF) has long been recognized as a hypotensive mediator. Little is known regarding the contribution of polymorphisms in VEGF gene to essential hypertension (EH), however. We aimed to investigate the association between +405 VEGF C/G single nucleotide polymorphism (SNP) and occurrence of EH in a sample of patients with diabetes. A study population of 474 subjects with diabetes of which 45.6% (216) had EH was enrolled in this study. Interviews and physical examinations were performed in a clinical setting. Subjects were matched in baseline anthropometric and biochemical characteristics except for total cholesterol. Genotyping of +405 VEGF C/G (rs2010963) SNP was carried out using polymerase chain reaction–restriction fragment length polymorphism. The allelic distribution of the sample did not violate Hardy–Weinberg equilibrium. Subjects with EH had a higher frequency of G allele (P = 0.005). Additionally, those with EH had a significantly higher frequency of GG genotype (P = 0.015). In multivariate logistic regression models controlling for possible confounders, having GG against CC genotype was associated with an odds ratio of 2.51 (95% CI: 1.44–4.38; P = 0.001). Moreover, presence of each G allele was linked to a 1.58-fold increase in risk of having EH (95% CI: 1.200–2.086; P = 0.001). In conclusion, +405 VEGF C/G SNP is associated with EH in patients with diabetes, suggesting presence of G allele and GG or CG genotype confer susceptibility towards EH.  相似文献   
63.
Oxidative stress occurs as a result of imbalance between generation and detoxification of reactive oxygen species (ROS). This kind of stress was rarely discussed in connection with foreign protein production in Escherichia coli. Relation between cytoplasmic recombinant protein expression with H2O2 concentration and catalase activity variation was already reported. The periplasmic space of E. coli has different oxidative environment in relative to cytoplasm and there are some benefits in periplasmic expression of recombinant proteins. In this study, hydrogen peroxide concentration and catalase activity following periplasmic expression of mouse IL-4 were measured in E. coli. After construction of pET2mIL4 plasmid, the expression of recombinant mouse interleukin-4 (mIL-4) was confirmed. Then, the H2O2 concentration and catalase activity variation in the cells were studied in exponential and stationary phases at various ODs and were compared to those of wild type cells and empty vector transformed cells. It was revealed that empty vector introduction and periplasmic recombinant protein expression increased significantly the H2O2 concentration of the cells. However, the H2O2 concentration in mIL-4 expressing cells was significantly higher than its concentration in empty vector transformed cells, demonstrating more effects of recombinant mIL-4 expression on H2O2 elevation. Likewise, although catalase activity was reduced in foreign DNA introduced cells, it was more lowered following expression of recombinant proteins. Correlation between H2O2 concentration elevation and catalase activity reduction with cell growth depletion is also demonstrated. It was also found that recombinant protein expression results in cell size increase.  相似文献   
64.
65.
66.
Microbes typically live in communities. The spatial organization of cells within a community is believed to impact the survival and function of the community1. Optical sectioning techniques, including confocal and two-photon microscopy, have proven useful for observing spatial organization of bacterial and archaeal communities2,3. A combination of confocal imaging and physical sectioning of yeast colonies has revealed internal organization of cells4. However, direct optical sectioning using confocal or two-photon microscopy has been only able to reach a few cell layers deep into yeast colonies. This limitation is likely because of strong scattering of light from yeast cells4.Here, we present a method based on fixing and cryosectioning to obtain spatial distribution of fluorescent cells within Saccharomyces cerevisiae communities. We use methanol as the fixative agent to preserve the spatial distribution of cells. Fixed communities are infiltrated with OCT compound, frozen, and cryosectioned in a cryostat. Fluorescence imaging of the sections reveals the internal organization of fluorescent cells within the community.Examples of yeast communities consisting of strains expressing red and green fluorescent proteins demonstrate the potentials of the cryosectioning method to reveal the spatial distribution of fluorescent cells as well as that of gene expression within yeast colonies2,3. Even though our focus has been on Saccharomyces cerevisiae communities, the same method can potentially be applied to examine other microbial communities.  相似文献   
67.
68.
The use of system identification to quantify trunk mechanical properties is growing in biomechanics research. The effects of several experimental and modelling factors involved in the system identification of trunk mechanical properties were investigated. Trunk kinematics and kinetics were measured in six individuals when exposed to sudden trunk perturbations. Effects of motion sensor positioning and properties of elements between the perturbing device and the trunk were investigated by adopting different models for system identification. Results showed that by measuring trunk kinematics at a location other than the trunk surface, the deformation of soft tissues is erroneously included into trunk kinematics and results in the trunk being predicted as a more damped structure. Results also showed that including elements between the trunk and the perturbing device in the system identification model did not substantially alter model predictions. Other important parameters that were found to substantially affect predictions were the cut-off frequency used when low-pass filtering raw data and the data window length used to estimate trunk properties.  相似文献   
69.
Thermodynamics of binding of divalent metal ions including Ca(2+) , Mg(2+) , Ba(2+) , and Cd(2+) to Ca-free horseradish peroxidase (HRP) enzyme was investigated using UV/VIS spectrophotometry and molecular-mechanic (MM) calculations. According to the obtained binding and thermodynamic parameters, trend of the relative binding affinities of these divalent metal cations was found to be: Ca(2+) >Cd(2+) >Mg(2+) >Ba(2+) . Binding analysis based on Scatchard and Hill models showed positive cooperativity effect between the two distal and proximal binding sites. Furthermore, kinetics of binding and reconstitution process was examined (using relaxation-time method) for binding of Ca(2+) (as the typical metal ion) to Ca-free HRP, which was found a second-order type having a two-step mechanism involving fast formation of Ca-free HRP/1?Ca(2+) as the kinetic intermediate in step 1. Finally, by means of MM calculations, the comparative stability energies were evaluated for binding of M(2+) metal cations to Ca-free HRP. Based on MM calculations, preferential binding of Ca(2+) ion was occurred on distal and proximal binding sites of Ca-free HRP associated with higher stability energies (E(total) ). Indeed, among the divalent metal ions, Ca(2+) with the highest binding affinity (maximum value of K(bin) and minimum value of ΔG$\rm{{_{bin}^{0}}}$), maximum value of exothermic binding enthalpy, and stability energies stabilizes the HRP structure along with an optimized catalytic activity.  相似文献   
70.
Supercapacitor electrode materials are synthesized by carbonizing a common livestock biowaste in the form of chicken eggshell membranes. The carbonized eggshell membrane (CESM) is a three‐dimensional macroporous carbon film composed of interwoven connected carbon fibers containing around 10 wt% oxygen and 8 wt% nitrogen. Despite a relatively low surface area of 221 m2 g?1, exceptional specific capacitances of 297 F g?1 and 284 F g?1 are achieved in basic and acidic electrolytes, respectively, in a 3‐electrode system. Furthermore, the electrodes demonstrate excellent cycling stability: only 3% capacitance fading is observed after 10 000 cycles at a current density of 4 A g?1. These very attractive electrochemical properties are discussed in the context of the unique structure and chemistry of the material.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号