首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1513篇
  免费   100篇
  国内免费   17篇
  1630篇
  2022年   15篇
  2021年   22篇
  2020年   8篇
  2019年   9篇
  2018年   19篇
  2017年   10篇
  2016年   30篇
  2015年   41篇
  2014年   40篇
  2013年   72篇
  2012年   81篇
  2011年   76篇
  2010年   51篇
  2009年   53篇
  2008年   68篇
  2007年   66篇
  2006年   55篇
  2005年   84篇
  2004年   80篇
  2003年   73篇
  2002年   46篇
  2001年   70篇
  2000年   58篇
  1999年   49篇
  1998年   28篇
  1997年   16篇
  1996年   21篇
  1995年   12篇
  1994年   16篇
  1993年   16篇
  1992年   27篇
  1991年   25篇
  1990年   18篇
  1989年   25篇
  1988年   30篇
  1987年   25篇
  1986年   23篇
  1985年   17篇
  1984年   12篇
  1983年   17篇
  1982年   12篇
  1981年   8篇
  1980年   14篇
  1979年   14篇
  1978年   7篇
  1977年   12篇
  1976年   8篇
  1973年   6篇
  1971年   9篇
  1966年   6篇
排序方式: 共有1630条查询结果,搜索用时 15 毫秒
991.
Coenzyme Q (Q) functions in the electron transport chain of both prokaryotes and eukaryotes. The biosynthesis of Q requires a number of steps involving at least eight Coq polypeptides. Coq5p is required for the C-methyltransferase step in Q biosynthesis. In this study we demonstrate that Coq5p is peripherally associated with the inner mitochondrial membrane on the matrix side. Phenotypic characterization of a collection of coq5 mutant yeast strains indicates that while each of the coq5 mutant strains are rescued by the Saccharomyces cerevisiae COQ5 gene, only the coq5-2 and coq5-5 mutants are rescued by expression of Escherichia coli ubiE, a homolog of COQ5. The coq5-2 and coq5-5 mutants contain mutations within or adjacent to conserved methyltransferase motifs that would be expected to disrupt the catalysis of C-methylation. The steady state levels of the Coq5-2 and Coq5-5 mutant polypeptides are not decreased relative to wild type Coq5p. Two other polypeptides required for Q biosynthesis, Coq3p and Coq4p, are detected in the wild type parent and in the coq5-2 and coq5-5 mutants, but are not detected in the coq5-null mutant, or in the coq5-4 or coq5-3 mutants. The effect of the coq5-4 mutation is similar to a null, since it results in a stop codon at position 93. However, the coq5-3 mutation (G304D) is located just four amino acids away from the C terminus. While C-methyltransferase activity is detectable in mitochondria isolated from this mutant, the steady state level of Coq5p is dramatically decreased. These studies show that at least two functions can be attributed to Coq5p; first, it is required to catalyze the C-methyltransferase step in Q biosynthesis and second, it is involved in stabilizing the Coq3 and Coq4 polypeptides required for Q biosynthesis.  相似文献   
992.
The effects of various treatments, which affect membrane structure, on microsomal thiamine diphosphatase and thiamine triphosphatase activities of rat brain, were examined. The treatment of micorosomes at alkaline pH caused a 2-fold activation of the thiamine diphosphatase, this being related to a change in membrane structure which was evidenced by a decrease of the turbidity of the microsomal suspension. Repeated freezing and thawing after hypo-osmotic treatment also increased the activity of microsomal thiamine diphosphatase. In addition, the thiamine diphosphatase activity was enhanced by treatment of the microsomes with phospholipase C or acetone. This lipid depletion resulted in a marked reduction in the apparent Km value of the thiamine diphosphatase with a corresponding loss in heat stability of the enzyme. We found further that brain thiamine diphosphatase was solubilized by Triton X-100. This decreased the phospholipid content in the preparation, but did not affect the apparent Km value and heat stability of the enzyme. In contrast with thiamine diphosphatase, thiamine triphosphatase was inactivated by treatment at alkaline pH or with acetone. However, treatment with phospholipase C did not affect the activity of thiamine triphosphatase.  相似文献   
993.
994.
995.
996.
In this study, poplar (Populus alba) cellulase (PaPopCel1) was overexpressed in a tropical Leguminosae tree, sengon (Paraserianthes falcataria), by the Agrobacterium tumefaciens method. PaPopCel1 overexpression increased the length and width of stems with larger leaves, which showed a moderately higher density of green color than leaves of the wild type. The pairs of leaves on the transgenic plants closed more slowly during sunset than those on the wild-type plants. When main veins from each genotype were excised and placed on a paper towel, however, the leaves of the transgenic plants closed more rapidly than those of the wild-type plant. Based on carbohydrate analyses of cell walls, the leaves of the transgenic plants contained less wall-bound xyloglucan than those of the wild-type plants. In situ xyloglucan endotransglucosylase activity showed that the incorporation of whole xyloglucan, potentially for wall tightening, occurred in the parenchyma cells (motor cells) of the petiolule pulvinus attached to the main vein, although the transgenic plant incorporated less whole xyloglucan than the wild-type plant. These observations support the hypothesis that the paracrystalline sites of cellulose microfibrils are attacked by poplar cellulase, which loosens xyloglucan intercalation, resulting in an irreversible wall modification. This process could be the reason why the overexpression of poplar cellulase both promotes plant growth and disturbs the biological clock of the plant by altering the closing movements of the leaves of the plant.  相似文献   
997.
Effective adoptive cancer immunotherapy depends on an ability to generate tumor-antigen-presenting cells and tumor-reactive effector lymphocytes and to deliver these effector cells to the tumor. Dendritic cells (DCs) are the most potent antigen-presenting cells, capable of sensitizing T cells to new and recall antigens. Many studies have shown that tumors express unique proteins that can be loaded on DCs to trigger an immune response. The current experimental and clinical statuses of adoptive transfer of tumor antigen-pulsed DCs and vaccine-primed activated T cells are summarized herein. Clinical trials of antigen-pulsed DCs have been conducted in patients with various types of cancer, including non-Hodgkin lymphoma, multiple myeloma, prostate cancer, renal cell carcinoma, malignant melanoma, colorectal cancer, and non-small cell lung cancer. These studies have shown that antigen-loaded DC vaccination is safe and promising for the treatment of cancer. In addition, tumor vaccine-primed T cells have been shown to induce antitumor activity in vivo. Several clinical studies are being conducted on the use of vaccine-primed T cells such as tumor-drainage lymph node. It is reasonable to consider using both tumor antigen-pulsed DCs and vaccine-primed lymphocytes as adjuvants. We are now investigating the use of autologous whole tumor antigen-pulsed DCs and the DC vaccine-primed activated lymphocytes in patients with multiple metastasis of solid tumors.  相似文献   
998.
Bacterial Hfq is a protein that plays an important role in the regulation of genes in cooperation with sRNAs. Escherichia coli Hfq (EcHfq) has two or more sites that bind RNA(s) including U-rich and/or the poly(A) tail of mRNA. However, functional and structural information about Bacillus subtilis Hfq (BsHfq) including the RNA sequences that specifically bind to it remain unknown. Here, we describe RNA aptamers including fragment (AG)3A that are recognized by BsHfq and crystal structures of the BsHfq–(AG)3A complex at 2.2 Å resolution. Mutational and structural studies revealed that the RNA fragment binds to the distal site, one of the two binding sites on Hfq, and identified amino acid residues that are critical for sequence-specific interactions between BsHfq and (AG)3A. In particular, R32 appears to interact with G bases in (AG)3A. Poly(A) also binds to the distal site of EcHfq, but the overall RNA structure and protein–RNA interaction patterns engaged in the R32 residues of BsHfq–(AG)3A differ from those of EcHfq–poly(A). These findings provide novel insight into how the Hfq homologue recognizes RNA.  相似文献   
999.

Background

In 2005, the Government of Senegal embarked on a campaign to eliminate a Glossina palpalis gambiensis population from the Niayes area (∼1000 km2) under the umbrella of the Pan African Tsetse and Trypanosomosis Eradication Campaign (PATTEC). The project was considered an ecologically sound approach to intensify cattle production. The elimination strategy includes a suppression phase using insecticide impregnated targets and cattle, and an elimination phase using the sterile insect technique, necessary to eliminate tsetse in this area.

Methodology/Principal Findings

Three main cattle farming systems were identified: a traditional system using trypanotolerant cattle and two “improved” systems using more productive cattle breeds focusing on milk and meat production. In improved farming systems herd size was 45% lower and annual cattle sales were €250 (s.d. 513) per head as compared to €74 (s.d. 38) per head in traditional farming systems (p<10−3). Tsetse distribution significantly impacted the occurrence of these farming systems (p = 0.001), with 34% (s.d. 4%) and 6% (s.d. 4%) of improved systems in the tsetse-free and tsetse-infested areas, respectively. We calculated the potential increases of cattle sales as a result of tsetse elimination considering two scenarios, i.e. a conservative scenario with a 2% annual replacement rate from traditional to improved systems after elimination, and a more realistic scenario with an increased replacement rate of 10% five years after elimination. The final annual increase of cattle sales was estimated at ∼€2800/km2 for a total cost of the elimination campaign reaching ∼€6400/km2.

Conclusion/Significance

Despite its high cost, the benefit-cost analysis indicated that the project was highly cost-effective, with Internal Rates of Return (IRR) of 9.8% and 19.1% and payback periods of 18 and 13 years for the two scenarios, respectively. In addition to an increase in farmers'' income, the benefits of tsetse elimination include a reduction of grazing pressure on the ecosystems.  相似文献   
1000.
Early afterdepolarizations (EADs) have been implicated in severe cardiac arrhythmias and sudden cardiac deaths. However, the mechanism(s) for EAD genesis, especially regarding the relative contribution of Ca(2+) wave (CaW) vs. L-type Ca current (I(Ca,L)), still remains controversial. In the present study, we simultaneously recorded action potentials (APs) and intracellular Ca(2+) images in isolated rabbit ventricular myocytes and systematically compared the properties of EADs in the following two pharmacological models: 1) hydrogen peroxide (H(2)O(2); 200 μM); and 2) isoproterenol (100 nM) and BayK 8644 (50 nM) (Iso + BayK). We assessed the rate dependency of EADs, the temporal relationship between EADs and corresponding CaWs, the distribution of EADs over voltage, and the effects of blockers of I(Ca,L), Na/Ca exchangers, and ryanodine receptors. The most convincing evidence came from the AP-clamp experiment, in which the cell membrane clamp was switched from current clamp to voltage clamp using a normal AP waveform without EAD; CaWs disappeared in the H(2)O(2) model, but persisted in the Iso + BayK model. We postulate that, although CaWs and reactivation of I(Ca,L) may act synergistically in either case, reactivation of I(Ca,L) plays a predominant role in EAD genesis under oxidative stress (H(2)O(2) model), while spontaneous CaWs are a predominant cause for EADs under Ca(2+) overload condition (Iso + BayK model).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号