首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   151篇
  免费   0篇
  151篇
  2014年   1篇
  2013年   3篇
  2012年   7篇
  2011年   7篇
  2010年   10篇
  2009年   6篇
  2008年   5篇
  2007年   15篇
  2006年   9篇
  2005年   4篇
  2004年   4篇
  2003年   1篇
  2002年   1篇
  2001年   4篇
  2000年   1篇
  1999年   6篇
  1998年   3篇
  1997年   7篇
  1996年   4篇
  1995年   3篇
  1994年   1篇
  1992年   3篇
  1991年   2篇
  1990年   1篇
  1989年   2篇
  1988年   2篇
  1984年   1篇
  1980年   2篇
  1978年   2篇
  1977年   1篇
  1972年   1篇
  1971年   1篇
  1959年   1篇
  1958年   7篇
  1957年   1篇
  1956年   6篇
  1955年   2篇
  1953年   3篇
  1952年   1篇
  1951年   4篇
  1950年   3篇
  1937年   1篇
  1926年   1篇
  1916年   1篇
排序方式: 共有151条查询结果,搜索用时 15 毫秒
11.
12.
Evolution Within a Bizarre Phylum: Homologies of the First Echinoderms   总被引:2,自引:1,他引:1  
SYNOPSIS. The Extraxial/Axial Theory (EAT) of echinoderm skeletalhomologies describes two major body wall types: axial and extraxial.The latter is subdivided into perforate and imperforate regions.Each of the regions has a distinctly different source in earlylarval development. Axial skeleton originates in the rudiment,and develops in association with the pentaradially arrangedhydrocoel according to specific ontogenetic principles. Perforateand imperforate extraxial regions are associated with the leftand right somatocoels respectively, are not governed by ontogeneticprinciples of plate addition, and are products of the non-rudimentpart of the larval body. The morphology of even the most bizarreof the earliest echinoderms can be explored using the EAT. Amongthese, edrioasteroid-like taxa best fit the idea that formsexpressing archimery in the sequential arrangement of axial,perforate extraxial, and imperforate extraxial regions are thefirst echinoderms. Metamorphosis is especially marked in cladesthat have a high axial to extraxial skeleton ratio because structuresdeveloping from the non-rudiment part are suppressed in favorof the developing axial elements during this process. However,inearly echinoderms, extraxial skeleton makes up a far largerproportion of the body wall than axial, implying that metamorphosiswas not as significant a part of the developmental trajectoryas it is in more recently evolved taxa. Echinoderm radiationconsists of a succession of apomorphies that reduced the expressionof extraxial components but increased the influence of axialones, with a concomitant increase in the prominence of metamorphosis.  相似文献   
13.
Microgeographical variation in shell morphology of the rock-dwelling land snail Chondrina clienta , collected from 30 sites within an area of 0.5 km2 on the island of Öland, Sweden, was examined in relation to its own population density and that of a potential competitor (the land snail Balea perversa ) and to environmental factors. Dispersal of marked individuals averaged 83 cm per year within a stone pile and 291 cm in an area of exposed bedrock. Local population density of active C. clienta ranged from 5 to 794 individuals per m2. Shell characters were highly intercorrelated, both within and between populations. Principal component analysis revealed that most of the interpopulational variation could be expressed by the single character of shell height, which ranged from 5.54 to 6.94 mm. In all populations, snails of a given size had the same whorl number. Shell size was not influenced by habitat type (exposed rock surface, stone pile or stone wall) or proportion of calcareous stones within habitat. It was, however, negatively correlated with local population density, indicating intraspecific competition, and positively correlated with the degree of plant cover within the habitat. Analysis of variance revealed additionally a density effect of B. perversa on shell size in C. clienta , probably as a result of interspecific competition. Breeding experiments using C. clienta from different sites and carried out under unifrom conditions caused most of the phenotypic variation to disappear, demonstrating the high phenotypic plasticity of the species.  相似文献   
14.
Abstract.  1. The spatio-temporal approach was used to evaluate the environmental features influencing carabid beetle assemblages along a chronosequence of an Italian Alpine glacier foreland. The influence of environmental variables on species richness, morphology (wing and body length), and distribution along the chronosequence was tested.
2. Species richness was found to be a poor indicator of habitat due to weak influences by environmental variables. It seems that the neighbouring habitats of a glacier foreland are not able to determine significant changes in carabid species richness.
3. Instead it appears that history (age since deglaciation) and habitat architecture of a glacier foreland are strongly correlated to species adaptive morphological traits, such as wing morphology and body length. Assemblages characterised by species with reduced wing size are linked to the older stages of the chronosequence, where habitat is more structured. Assemblages characterised by the largest species are linked to the younger sites near the glacier. These morphological differentiations are explained in detail.
4. Habitat age can therefore be considered the main force determining assemblage composition. On the basis of the relationship between morphological traits and environmental variables, it seems likely that age since deglaciation is the main variable influencing habitat structure (primary effect) on the Forni foreland. The strong relationship between carabid assemblages and habitat type indicates that site age has but a secondary effect on carabid assemblages. This may be utilised to interpret potential changes in assemblages linked to future glacier retreat.  相似文献   
15.
Abstract 1. Habitat fragmentation is considered one of the major threats to invertebrate diversity in semi‐natural grassland. However, the effects of habitat fragmentation through mowing on the rich insect fauna of these grasslands have not been sufficiently investigated and experiments are especially rare. 2. We studied the impact of small‐scale grassland fragmentation on orthopterans over 7 years in an experiment which allowed us to additionally investigate the effect of frequent mowing on Orthoptera communities. 3. Overall, Orthoptera density and species richness increased over time. This was likely a result of increased small‐scale habitat heterogeneity and the provision of a short‐turf habitat suitable for xerophilous species. The fragmentation affected orthopteran density and species composition but not species richness whose response lagged behind the changes in abundance. 4. Responses differed between suborders. Ensifera density was higher in fragment than in control plots. Caelifera density did not differ between fragment and control plots. The mown matrix was an unsuitable habitat for most of the species, particularly within the Ensifera. 5. Our experiment shows that even small‐scale fragmentation can affect Orthopteran communities and that the effects became more pronounced over time. As the mown matrix was unsuitable for many Ensifera species, they may go locally extinct when large areas are mown simultaneously.  相似文献   
16.
17.
18.
19.
The present field study compared the degree of defoliation of three Guianian melastome, two myrmecophytes (i.e. plants sheltering ants in hollow structures) and Clidemia sp., a nonmyrmecophytic plant serving as a control. Maieta guianensis Aubl. hosted mostly Pheidole minutula Mayr whatever the area, whereas Tococa guianensis Aubl. hosted mostly Azteca bequaerti Wheeler along streams and Crematogaster laevis Mayr or Azteca sp. 1 in the understory where it never blossomed. Only Tococa , when sheltering A. bequaerti in what can be considered as a truly mutualistic relationship, showed significantly less defoliation than control plants. In the other associations, the difference was not significant, but P. minutula is mutualistic with Maieta because it furnishes some protection (exclusion experiments) plus nutrients (previous studies). When devoid of ants, Tococa showed significantly greater defoliation than control plants; therefore, it was deduced that Tococa probably lacks certain antidefoliator metabolites that control plants possess (both Tococa and control plants are protected by ground-nesting, plant-foraging ants, which is termed 'general myrmecological protection'). Consequently, plant-ants other than A. bequaerti probably also protect Tococa slightly, thus compensating for this deficiency and permitting it to live in the understory until treefall gaps provide the conditions necessary for seed production.  © 2006 The Linnean Society of London, Biological Journal of the Linnean Society , 2006, 89 , 91–98.  相似文献   
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号