首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   520篇
  免费   42篇
  2021年   4篇
  2020年   4篇
  2019年   10篇
  2017年   5篇
  2016年   4篇
  2015年   15篇
  2014年   13篇
  2013年   25篇
  2012年   27篇
  2011年   26篇
  2010年   14篇
  2009年   11篇
  2008年   24篇
  2007年   23篇
  2006年   18篇
  2005年   24篇
  2004年   21篇
  2003年   24篇
  2002年   17篇
  2001年   11篇
  2000年   16篇
  1999年   11篇
  1998年   6篇
  1997年   4篇
  1996年   5篇
  1995年   7篇
  1994年   5篇
  1992年   9篇
  1991年   7篇
  1990年   7篇
  1987年   9篇
  1985年   11篇
  1984年   6篇
  1983年   6篇
  1982年   6篇
  1980年   5篇
  1979年   13篇
  1978年   10篇
  1977年   4篇
  1976年   9篇
  1974年   6篇
  1973年   6篇
  1972年   5篇
  1968年   3篇
  1966年   4篇
  1963年   3篇
  1959年   4篇
  1953年   3篇
  1949年   3篇
  1944年   3篇
排序方式: 共有562条查询结果,搜索用时 346 毫秒
81.
The protease gamma-secretase plays a pivotal role in the synthesis of pathogenic amyloid-beta in Alzheimer's disease (AD). Here, we report a further extension to a series of cyclohexyl sulfone-based gamma-secretase inhibitors which has allowed the preparation of highly potent compounds which also demonstrate robust Abeta(40) lowering in vivo (e.g., compound 32, MED 1mg/kg p.o. in APP-YAC mice).  相似文献   
82.
Human ESC-derived mesenchymal stem cell (MSC)-conditioned medium (CM) was previously shown to mediate cardioprotection during myocardial ischemia/reperfusion injury through large complexes of 50–100 nm. Here we show that these MSCs secreted 50- to 100-nm particles. These particles could be visualized by electron microscopy and were shown to be phospholipid vesicles consisting of cholesterol, sphingomyelin, and phosphatidylcholine. They contained coimmunoprecipitating exosome-associated proteins, e.g., CD81, CD9, and Alix. These particles were purified as a homogeneous population of particles with a hydrodynamic radius of 55–65 nm by size-exclusion fractionation on a HPLC. Together these observations indicated that these particles are exosomes. These purified exosomes reduced infarct size in a mouse model of myocardial ischemia/reperfusion injury. Therefore, MSC mediated its cardioprotective paracrine effect by secreting exosomes. This novel role of exosomes highlights a new perspective into intercellular mediation of tissue injury and repair, and engenders novel approaches to the development of biologics for tissue repair.  相似文献   
83.
The aim of this study was to determine the suitability of water quality in the Roanoke River of North Carolina for supporting shortnose sturgeon Acipenser brevirostrum, an endangered species in the United States. Fathead minnows Pimephales promelas were also evaluated alongside the sturgeon as a comparative species to measure potential differences in fish survival, growth, contaminant accumulation, and histopathology in a 28‐day in situ toxicity test. Captively propagated juvenile shortnose sturgeon (total length 49 ± 8 mm, mean ± SD) and fathead minnows (total length 39 ± 3 mm, mean ± SD) were used in the test and their outcomes were compared to simultaneous measurements of water quality (temperature, dissolved oxygen, pH, conductivity, total ammonia nitrogen, hardness, alkalinity, turbidity) and contaminant chemistry (metals, polycyclic aromatic hydrocarbons, organochlorine pesticides, current use pesticides, polychlorinated biphenyls) in river water and sediment. In the in situ test, there were three non‐riverine control sites and eight riverine test sites with three replicate cages (25 × 15‐cm (OD) clear plexiglass with 200‐μm tear‐resistant Nitex® screen over each end) of 20 shortnose sturgeon per cage at each site. There was a single cage of fathead minnows also deployed at each site alongside the sturgeon cages. Survival of caged shortnose sturgeon among the riverine sites averaged 9% (range 1.7–25%) on day 22 of the 28‐day study, whereas sturgeon survival at the non‐riverine control sites averaged 64% (range 33–98%). In contrast to sturgeon, only one riverine deployed fathead minnow died (average 99.4% survival) over the 28‐day test period and none of the control fathead minnows died. Although chemical analyses revealed the presence of retene (7‐isopropyl‐1‐methylphenanthrene), a pulp and paper mill derived compound with known dioxin‐like toxicity to early life stages of fish, in significant quantities in the water (251–603 ng L?1) and sediment (up to 5000 ng g?1 dry weight) at several river sites, no correlation was detected of adverse water quality conditions or measured contaminant concentrations to the poor survival of sturgeon among riverine test sites. Histopathology analysis determined that the mortality of the river deployed shortnose sturgeon was likely due to liver and kidney lesions from an unknown agent(s). Given the poor survival of shortnose sturgeon (9%) and high survival of fathead minnows (99.4%) at the riverine test sites, our study indicates that conditions in the Roanoke River are incongruous with the needs of juvenile shortnose sturgeon and that fathead minnows, commonly used standard toxicity test organisms, do not adequately predict the sensitivity of shortnose sturgeon. Therefore, additional research is needed to help identify specific limiting factors and management actions for the enhancement and recovery of this imperiled fish species.  相似文献   
84.
This study investigated whether Euphorbia subgenus Chamaesyce subsection Acutae contains C(3)-C(4) intermediate species utilizing C(2) photosynthesis, the process where photorespired CO(2) is concentrated into bundle sheath cells. Euphorbia species in subgenus Chamaesyce are generally C(4), but three species in subsection Acutae (E. acuta, E. angusta, and E. johnstonii) have C(3) isotopic ratios. Phylogenetically, subsection Acutae branches between basal C(3) clades within Euphorbia and the C(4) clade in subgenus Chamaesyce. Euphorbia angusta is C(3), as indicated by a photosynthetic CO(2) compensation point (Г) of 69 μmol mol(-1) at 30 °C, a lack of Kranz anatomy, and the occurrence of glycine decarboxylase in mesophyll tissues. Euphorbia acuta utilizes C(2) photosynthesis, as indicated by a Г of 33 μmol mol(-1) at 30 °C, Kranz-like anatomy with mitochondria restricted to the centripetal (inner) wall of the bundle sheath cells, and localization of glycine decarboxlyase to bundle sheath mitochondria. Low activities of PEP carboxylase, NADP malic enzyme, and NAD malic enzyme demonstrated no C(4) cycle activity occurs in E. acuta thereby classifying it as a Type I C(3)-C(4) intermediate. Kranz-like anatomy in E. johnstonii indicates it also utilizes C(2) photosynthesis. Given the phylogenetically intermediate position of E. acuta and E. johnstonii, these results support the hypothesis that C(2) photosynthesis is an evolutionary intermediate condition between C(3) and C(4) photosynthesis.  相似文献   
85.
86.
87.
Northern peatlands have accumulated one third of the Earth's soil carbon stock since the last Ice Age. Rapid warming across northern biomes threatens to accelerate rates of peatland ecosystem respiration. Despite compensatory increases in net primary production, greater ecosystem respiration could signal the release of ancient, century‐ to millennia‐old carbon from the peatland organic matter stock. Warming has already been shown to promote ancient peatland carbon release, but, despite the key role of vegetation in carbon dynamics, little is known about how plants influence the source of peatland ecosystem respiration. Here, we address this issue using in situ 14C measurements of ecosystem respiration on an established peatland warming and vegetation manipulation experiment. Results show that warming of approximately 1 °C promotes respiration of ancient peatland carbon (up to 2100 years old) when dwarf‐shrubs or graminoids are present, an effect not observed when only bryophytes are present. We demonstrate that warming likely promotes ancient peatland carbon release via its control over organic inputs from vascular plants. Our findings suggest that dwarf‐shrubs and graminoids prime microbial decomposition of previously ‘locked‐up’ organic matter from potentially deep in the peat profile, facilitating liberation of ancient carbon as CO2. Furthermore, such plant‐induced peat respiration could contribute up to 40% of ecosystem CO2 emissions. If consistent across other subarctic and arctic ecosystems, this represents a considerable fraction of ecosystem respiration that is currently not acknowledged by global carbon cycle models. Ultimately, greater contribution of ancient carbon to ecosystem respiration may signal the loss of a previously stable peatland carbon pool, creating potential feedbacks to future climate change.  相似文献   
88.
89.
When recently arisen spontaneous petite mutants of Saccharomyces cerevisiae are crossed, respiratory competent diploids can be recovered. Such restored strains can be divided into two groups having sectored or unsectored colony morphology, the former being due to an elevated level of spontaneous petite mutation. On the basis of petite frequency, the sectored strains can be subdivided into those with a moderate frequency (5–16%) and those with a high frequency (>60%) of petite formation. Each of the three categories of restored strains can be found on crossing two petites, suggesting either that the parental mutants contain a heterogeneous population of deleted mtDNAs at the time of mating or that different interactions can occur between the defective molecules. Restriction endonuclease analysis of mtDNA from restored strains that have a wild-type petite frequency showed that they had recovered a wild-type mtDNA fragmentation pattern. Conversely, all examined cultures from both categories of sectored strains contained aberrant mitochondrial genomes that were perpetuated without change over at least 200 generations. In addition, sectored colony siblings can have different aberrant mtDNAs. The finding that two sectored, restored strains from different crosses have identical but aberrant mtDNAs provides evidence for preferred deletion sites from the mitochondrial genome. Although it appears that mtDNAs from sectored strains invariably contain duplications, there is no apparent correlation between the size of the duplication and spontaneous petite frequency.  相似文献   
90.
Trypsin-susceptible cell surface characteristics of Streptococcus sanguis   总被引:1,自引:0,他引:1  
The adherence of Streptococcus sanguis to saliva-coated hydroxylapatite was markedly reduced by treatment of the cells with trypsin. In Scatchard plots of adherence data, protease-treated S. sanguis did not exhibit the characteristic positive slopes, suggesting that trypsin prevented cooperative interactions between the cells and artificial pellicle. Trypsin also reduced the tendency of S. sanguis to bind to hexadecane and to octyl-Sepharose. When sodium dodecyl sulfate was used to elute S. sanguis from columns of octyl-Sepharose, it was observed that the elution profiles of trypsin-treated cells were more complex than those of control cells. Water and salts were incapable of removing the cells from octyl-Sepharose. The results suggest that adherence to saliva-coated hydroxylapatite, binding to hexadecane and to octyl-Sepharose depend on trypsin-susceptible cell surface molecules.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号