首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   138篇
  免费   23篇
  2018年   1篇
  2016年   3篇
  2015年   2篇
  2014年   4篇
  2013年   3篇
  2012年   5篇
  2011年   5篇
  2010年   1篇
  2009年   2篇
  2008年   4篇
  2007年   9篇
  2006年   3篇
  2005年   5篇
  2004年   6篇
  2003年   5篇
  2002年   6篇
  2001年   3篇
  2000年   4篇
  1999年   11篇
  1998年   3篇
  1997年   10篇
  1996年   6篇
  1995年   9篇
  1994年   4篇
  1993年   11篇
  1992年   14篇
  1991年   8篇
  1990年   1篇
  1989年   3篇
  1988年   1篇
  1987年   3篇
  1986年   1篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1977年   1篇
排序方式: 共有161条查询结果,搜索用时 78 毫秒
81.
The hsp70(dnaK) locus of the moderate thermophilic archaeon Methanosarcina thermophila TM-1 was cloned, sequenced, and tested in vitro to measure gene induction by heat and ammonia, i.e., stressors pertinent to the biotechnological ecosystem of this methanogen that plays a key role in anaerobic bioconversions. The locus' genes and organization, 5'-grpE-hsp70(dnaK)-hsp40 (dnaJ)-trkA-3', are the same as those of the closely related mesophile Methanosarcina mazei S-6, but different from those of the only other archaeon for which comparable sequence data exist, the thermophile Methanobacterium thermoautotrophicum deltaH, from another genus, in which trkA is not part of the locus. The proteins encoded in the TM-1 genes are very similar to the S-6 homologs, but considerably less similar to the deltaH proteins. The TM-1 Hsp70(DnaK) protein has the 23-amino acid deletion--by comparison with homologs from gram-negative bacteria first described in the S-6 molecule and later found to be present in all homologs from archaea and gram positives. The genes responded to a temperature elevation in a manner that demonstrated that they are heat-shock genes, functionally active in vivo. Ammonia also induced a heat-shock type of response by hsp70(dnaK), and a similar response by trkA. The data suggest that the moderate thermophile TM-1 has an active Hsp70(DnaK)-chaperone machine in contrast to hyperthermophilic archaea, and that trkA is a stress gene, inasmuch as it responds like classic heat-shock genes to stressors that induce a typical heat-shock response.  相似文献   
82.
83.
Positive allosteric modulators (PAMs) of α4β2 nicotinic acetylcholine receptors have the potential to improve cognitive function and alleviate pain. However, only a few selective PAMs of α4β2 receptors have been described limiting both pharmacological understanding and drug-discovery efforts. Here, we describe a novel selective PAM of α4β2 receptors, NS206, and compare with a previously reported PAM, NS9283. Using two-electrode voltage-clamp electrophysiology in Xenopus laevis oocytes, NS206 was observed to positively modulate acetylcholine (ACh)-evoked currents at both known α4β2 stoichiometries (2α:3β and 3α:2β). In the presence of NS206, peak current amplitudes surpassed those of maximal efficacious ACh stimulations (Emax(ACh)) with no or limited effects at potencies and current waveforms (as inspected visually). This pharmacological action contrasted with that of NS9283, which only modulated the 3α:2β receptor and acted by left shifting the ACh concentration-response relationship. Interestingly, the two modulators can act simultaneously in an additive manner at 3α:2β receptors, which results in current levels exceeding Emax(ACh) and a left-shifted ACh concentration-response relationship. Through use of chimeric and point-mutated receptors, the binding site of NS206 was linked to the α4-subunit transmembrane domain, whereas binding of NS9283 was shown to be associated with the αα-interface in 3α:2β receptors. Collectively, these data demonstrate the existence of two distinct modulatory sites in α4β2 receptors with unique pharmacological attributes that can act additively. Several allosteric sites have been identified within the family of Cys-loop receptors and with the present data, a detailed picture of allosteric modulatory mechanisms of these important receptors is emerging.  相似文献   
84.
β-Glucosidase activity plays an essential role for efficient and complete hydrolysis of lignocellulosic biomass. Direct use of fungal fermentation broths can be cost saving relative to using commercial enzymes for production of biofuels and bioproducts. Through a fungal screening program for β-glucosidase activity, strain AP (CBS 127449, Aspergillus saccharolyticus ) showed 10 times greater β-glucosidase activity than the average of all other fungi screened, with Aspergillus niger showing second greatest activity. The potential of a fermentation broth of strain AP was compared with the commercial β-glucosidase-containing enzyme preparations Novozym 188 and Cellic CTec. The fermentation broth was found to be a valid substitute for Novozym 188 in cellobiose hydrolysis. The Michaelis-Menten kinetics affinity constant as well as performance in cellobiose hydrolysis with regard to product inhibition were found to be the same for Novozym 188 and the broth of strain AP. Compared with Novozym 188, the fermentation broth had higher specific activity (11.3?U/mg total protein compared with 7.5 U/mg total protein) and also increased thermostability, identified by the thermal activity number of 66.8 vs. 63.4?°C for Novozym 188. The significant thermostability of strain AP β-glucosidases was further confirmed when compared with Cellic CTec. The β-glucosidases of strain AP were able to degrade cellodextrins with an exo-acting approach and could hydrolyse pretreated bagasse to monomeric sugars when combined with Celluclast 1.5L. The fungus therefore showed great potential as an onsite producer for β-glucosidase activity.  相似文献   
85.
The aim of this work was to investigate the optimal process conditions leading to high glucose yield (over 80 %) after wet explosion (WEx) pretreatment and enzymatic hydrolysis. The study focused on determining the “sweet spot” where the glucose yield obtained is optimized compared to the cost of the enzymes. WEx pretreatment was conducted at different temperatures, times, and oxygen concentrations to determine the best WEx pretreatment conditions for the most efficient enzymatic hydrolysis. Enzymatic hydrolysis was further optimized at the optimal conditions using central composite design of response surface methodology with respect to two variables: Cellic® CTec2 loading [5 to 40 mg enzyme protein (EP)/g glucan] and substrate concentration (SC) (5 to 20 %) at 50 °C for 72 h. The most efficient and economic conditions for corn stover conversion to glucose were obtained when wet-exploded at 170 °C for 20 min with 5.5 bar oxygen followed by enzymatic hydrolysis at 20 % SC and 15 mg EP/g glucan (5 filter paper units) resulting in a glucose yield of 84 %.  相似文献   
86.
Ionotropic glutamate receptors are key players in fast excitatory synaptic transmission within the central nervous system. These receptors have been divided into three subfamilies: the N-methyl-d-aspartic acid (NMDA), 2-amino-3-(3-hydroxy-5-methyl-4-isoxazolyl)propionic acid (AMPA) and kainate receptors. Kainate has previously been crystallized with the ligand binding domain (LBD) of AMPA receptors (GluA2 and GluA4) and kainate receptors (GluK1 and GluK2). Here, we report the structures of the kainate receptor GluK3 LBD in complex with kainate and GluK1 LBD in complex with kainate in the absence of glycerol. Kainate introduces a conformational change in GluK3 LBD comparable to that of GluK2, but different from the conformational changes induced in GluA2 and GluK1. Compared to their domain closures in a glutamate bound state, GluA2 and GluK1 become more open and kainate induces a domain closure of 60% and 62%, respectively, relative to glutamate (100%). In GluK2 and GluK3 with kainate, the domain closure is 88% and 83%, respectively. In previously determined structures of GluK1 LBD in complex with kainate, glycerol is present in the binding site where it bridges interlobe residues and thus, might contribute to the large domain opening. However, the structure of GluK1 LBD with kainate in the absence of glycerol confirms that the observed domain closure is not an artifact of crystallization conditions. Comparison of the LBD structures with glutamate and kainate reveals that contacts are lost upon binding of kainate in the three kainate receptors, which is in contrast to the AMPA receptors where similar contacts are seen. It was revealed by patch clamp electrophysiology studies that kainate is a partial agonist at GluK1 with 36% efficacy compared to glutamate, which is in between the published efficacies of kainate at GluK2 and AMPA receptors. The ranking of efficacies seems to correlate with LBD domain closures.  相似文献   
87.
88.
In this study, the prospect of using an Upflow Anaerobic Sludge Blanket (UASB) reactor for detoxification of process water derived from bioethanol production has been investigated. The bioethanol effluent (BEE) originated from wet oxidized wheat straw fermented by Saccharomyces cerevisiae and Thermoanaerobacter mathranii A3M4 to produce ethanol from glucose and xylose, respectively. In batch experiments the methane potential of BEE was determined to 529 mL-CH(4)/g-VS. In batch degradation experiments it was shown that the presence of BEE had a positive influence on the removal of the inhibitors 2-furoic acid, 4-hydroxyacetophenone, and acetovanillone as compared to conversion of the inhibitors as sole substrate in synthetic media. Furthermore, experiments were carried out treating BEE in a laboratory-scale UASB reactor. The results showed a Chemical Oxygen Demand (COD) removal of 80% (w/w) at an organic loading rate of 29 g-COD/(L. d). GC analysis of the lignocellulosic related potentially inhibitory compounds 2-furoic acid, vanillic acid, homovanillic acid, acetovanillone, syringic acid, acetosyringone, syringol, 4-hydroxybenzoic acid, and 4-hydroxybenzaldehyde showed that all of these compounds were removed from the BEE in the reactor. Implementation of a UASB purification step was found to be a promising approach to detoxify process water from bioethanol production allowing for recirculation of the process water and reduced production costs.  相似文献   
89.
The gamma-aminobutyric acid, type A (GABA(A)) receptor is a chloride-conducting receptor composed of alpha, beta, and gamma subunits assembled in a pentameric structure forming a central pore. Each subunit has a large extracellular agonist binding domain and four transmembrane domains (M1-M4), with the second transmembrane (M2) domain lining the pore. Mutation of five amino acids in the M1-M2 loop of the beta(3) subunit to the corresponding amino acids of the alpha(7) nicotinic acetylcholine subunit rendered the GABA(A) receptor cation-selective upon co-expression with wild type alpha(2) and gamma(2) subunits. Similar mutations in the alpha(2) or gamma(2) subunits did not lead to such a change in ion selectivity. This suggests a unique role for the beta(3) subunit in determining the ion selectivity of the GABA(A) receptor. The pharmacology of the mutated GABA(A) receptor is similar to that of the wild type receptor, with respect to muscimol binding, Zn(2+) and bicuculline sensitivity, flumazenil binding, and potentiation of GABA-evoked currents by diazepam. There was, however, an increase in GABA sensitivity (EC(50) = 1.3 microm) compared with the wild type receptor (EC(50) = 6.4 microm) and a loss of desensitization to GABA of the mutant receptor.  相似文献   
90.
Anaerobic biodegradation of fermented spent sulphite liquor, SSL, which is produced during the manufacture of sulphite pulp, was investigated. SSL contains a high concentration of lignin products in addition to hemicellulose and has a very high COD load (173 g COD l(-1)). Batch experiments with diluted SSL and pretreated SSL indicated a potential of 12-22 l methane per litre SSL, which corresponds to 0.13-0.22 l methane (g VS)(-1) and COD removal of up to 37%. COD removal in a mesophilic upflow anaerobic sludge blanket, UASB. reactor ranged from 10% to 31% at an organic loading rate, OLR, of 10-51 g (1 d)(-1) and hydraulic retention time from 3.7 to 1.5 days. The biogas productivity was 3 1 (l(reactor d)(-1), with a yield of 0.05 l gas (g VS)(-1). These results suggest that anaerobic digestion in UASB reactors may provide a new alternative for the treatment of SSL to other treatment strategies such as incineration. Although the total COD reduction achieved is limited, bioenergy is produced and readily biodegradable matter is removed causing less load on post-treatment installations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号