首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   230篇
  免费   16篇
  国内免费   1篇
  2023年   1篇
  2022年   2篇
  2021年   7篇
  2020年   6篇
  2019年   1篇
  2018年   3篇
  2017年   8篇
  2016年   2篇
  2015年   10篇
  2014年   12篇
  2013年   35篇
  2012年   16篇
  2011年   16篇
  2010年   10篇
  2009年   3篇
  2008年   6篇
  2007年   12篇
  2006年   7篇
  2005年   12篇
  2004年   7篇
  2003年   5篇
  2002年   8篇
  2001年   11篇
  2000年   4篇
  1999年   8篇
  1998年   4篇
  1997年   3篇
  1993年   1篇
  1992年   3篇
  1991年   2篇
  1989年   3篇
  1988年   1篇
  1987年   2篇
  1985年   6篇
  1984年   1篇
  1982年   1篇
  1980年   2篇
  1979年   2篇
  1978年   3篇
  1970年   1篇
排序方式: 共有247条查询结果,搜索用时 546 毫秒
91.
In this study a microRNA (miRNA) signature was identified in a gemcitabine resistant pancreatic ductal adenocarcinoma (PDAC) cell line model (BxPC3-GZR) and this signature was further examined in advanced PDAC tumor specimens from The Cancer Genome Atlas (TCGA) database. BxPC3-GZR showed a mesenchymal phenotype, expressed high levels of CD44 and showed a highly significant deregulation of 17 miRNAs. Based on relevance to cancer, a seven-miRNA signature (miR-100, miR-125b, miR-155, miR-21, miR-205, miR-27b and miR-455-3p) was selected for further studies. A strong correlation was observed for six of the seven miRNAs in 43 advanced tumor specimens compared to normal pancreas tissue. To assess the functional relevance we initially focused on miRNA-125b, which is over-expressed in both the BxPC3-GZR model and advanced PDAC tumor specimens. Knockdown of miRNA-125b in BxPC3-GZR and Panc-1 cells caused a partial reversal of the mesenchymal phenotype and enhanced response to gemcitabine. Moreover, RNA-seq data from each of 40 advanced PDAC tumor specimens from the TCGA data base indicate a negative correlation between expression of miRNA-125b and five of six potential target genes (BAP1, BBC3, NEU1, BCL2, STARD13). Thus far, two of these target genes, BBC3 and NEU1, that are tumor suppressor genes but not yet studied in PDAC, appear to be functional targets of miR-125b since knockdown of miR125b caused their up regulation. These miRNAs and their molecular targets may serve as targets to enhance sensitivity to chemotherapy and reduce metastatic spread.  相似文献   
92.
Since the discovery of RNA interference (RNAi), researchers have identified a variety of small interfering RNA (siRNA) structures that demonstrate the ability to silence gene expression through the classical RISC-mediated mechanism. One such structure, termed "Dicer-substrate siRNA" (dsiRNA), was proposed to have enhanced potency via RISC-mediated gene silencing, although a comprehensive comparison of canonical siRNAs and dsiRNAs remains to be described. The present study evaluates the in vitro and in vivo activities of siRNAs and dsiRNAs targeting Phosphatase and Tensin Homolog (PTEN) and Factor VII (FVII). More than 250 compounds representing both siRNA and dsiRNA structures were evaluated for silencing efficacy. Lead compounds were assessed for duration of silencing and other key parameters such as cytokine induction. We identified highly active compounds from both canonical siRNAs and 25/27 dsiRNAs. Lead compounds were comparable in potency both in vitro and in vivo as well as duration of silencing in vivo. Duplexes from both structural classes tolerated 2'-OMe chemical modifications well with respect to target silencing, although some modified dsiRNAs demonstrated reduced activity. On the other hand, dsiRNAs were more immunostimulatory as compared with the shorter siRNAs, both in vitro and in vivo. Because the dsiRNA structure does not confer any appreciable benefits in vitro or in vivo while demonstrating specific liabilities, further studies are required to support their applications in RNAi therapeutics.  相似文献   
93.
94.
H-Beta zeolite, a microporous solid acid, is demonstrated to be an efficient catalyst for the selective deprotection of cyclic as well as acyclic O-isopropylidene sugar acetals derived from d-glucose, D-xylose, D-mannose, and D-mannitol in aqueous MeOH at room temperature. A notable observation is the conversion of d-mannitol triacetonide into 1,2:3,4-di-O-isopropylidene-D-mannitol (48%) and 3,4-O-isopropylidene-D-mannitol (36%) brought about in 6h by H-beta zeolite and the non-occurrence of any hydrolysis in the case of H-ZSM-5 catalyzed reaction in 24h under the same conditions.  相似文献   
95.
96.
Hitherto this is the first report pertaining to production of biofilm inhibitory compound(s) (BIC) from Bacillus subtilis BR4 against Pseudomonas aeruginosa (ATCC 27853) coupled with production optimization. In order to achieve this, combinations of media components were formulated by employing statistical tools such as Plackett–Burman analysis and central composite rotatable design (CCRD). It was evident that at 35 ml L?1 glycerol and 3.8 g L?1 casamino acid, anti-biofilm activity and production of extracellular protein significantly increased by 1.5-fold and 1.2-fold, respectively. These results corroborate that the combination of glycerol and casamino acid plays a key role in the production of BIC. Further, metabolic profiling of BIC was carried out using liquid chromatography/tandem mass spectrometry (LC–MS/MS) based on m/z value. The presence of Stigmatellin Y was predicted with monoisotopic neutral mass of 484.2825 Da. In support of optimization study, higher production of BIC was confirmed in the optimized-media-grown BR4 (OPT-BR4) than in the ideal-media-grown BR4 (ID-BR4) by LC–MS/MS analysis. PqsR in P. aeruginosa is a potential target for anti-virulent therapy. Molecular docking study has revealed that Stigmatellin Y interacts with PqsR in the similar orientation like a cognate signal (PQS) and synthetic inhibitor. In addition, Stigmatellin Y was found to exhibit interaction with four more amino acid residues of PqsR to establish strong affinity. Stigmatellin Y thus might play a role of competitor for PQS to distract PQS–PqsR mediated communication in P. aeruginosa. The present investigation thus paves new avenues to develop anti-Pseudomonas virulent therapy.  相似文献   
97.
COS cells transiently expressing glutathione S-transferase (GST) pi, Ya, or Yb1 (human Pi, rat Alpha or Mu, cytosolic classes) were purified by flow cytometry and used in colony-forming assays to show that GST confers cellular resistance to the carcinogen benzo[a]pyrene (+/-)-anti-diol epoxide (anti-BPDE). We developed a sorting technique to viably separate recombinant GST+ cells (20%) from the nonexpressing electroporated population (80%) on the basis of a GST-catalyzed intracellular conjugation of glutathione to the fluorescent labeling reagent monochlorobimane (mClB). The concentration of mClB, length of time cells are exposed to mClB, and activity of the expressed GST isozyme determined the degree to which recombinant GST+ cells fluoresced more intensely than controls. On-line reagent addition ensured that all cells were exposed to 25 microM mClB for 30-35 s during transit before being analyzed for fluorescence intensity and sorted. The apparent Km for mClB of the endogenous COS cell GST-catalyzed intracellular reaction was 88 microM. Stained GST Ya+ or Yb1+ cells catalyzed the conjugation 2 or 5 times more effectively than GST pi+ cells. Enzyme activity in cytosolic fractions prepared from sorted recombinant GST+ cells was 1.8 +/- 0.3-fold greater than that of the control (80 +/- 4 nmol/min/mg protein). Upon a 5-fold purification of GST pi+ cells in the electroporated population, resistance to anti-BPDE in colony-forming assays increased 5 times, from 1.1-fold (unsorted) to 1.5-fold (sorted) (P less than 0.001).  相似文献   
98.
In order to identify amino acids involved in binding the co-substrate glutathione to the human glutathione S-transferase (GST) pi enzyme, we assembled three criteria to implicate amino acids whose role in binding and catalysis could be tested. Presence of a residue in the highly conserved exon 4 of the GST gene, positional conservation of a residue in 12 glutathione S-transferase amino acid sequences, and results from published chemical modification studies were used to implicate 14 residues. A bacterial expression vector (pUC120 pi), which enabled abundant production (2-26% of soluble Escherichia coli protein) of wild-type or mutant GST pi, was constructed, and, following nonconservative substitution mutation of the 14 implicated residues, five mutants (R13S, D57K, Q64R, I68Y, L72F) showed a greater than 95% decrease in specific activity. A quantitative assay was developed which rapidly measured the ability of wild-type or mutant glutathione S-transferase to bind to glutathione-agarose. Using this assay, each of the five loss of function mutants showed a greater than 20-fold decrease in binding glutathione, an observation consistent with a recent crystal structure analysis showing that several of these residues help to form the glutathione-binding cleft.  相似文献   
99.
The location of the various copper binding sites for horse and human hemoglobin was probed using spin labels attached to the beta-93 cysteine residue. Dipole-dipole interactions between the spin label and bound copper produce a decrease in the amplitude of the spin label spectrum which was used to estimate the Cu(II) spin label distance. By comparing the results with horse and human hemoglobin at 298 and 77 K four different Cu(II) binding sites were identified. The low affinity horse hemoglobin site with the sulfhydryl blocked (site 1) was found to be located 10-13 A from the sulfhydryl spin label on the surface of the molecule. Only with a free sulfhydryl is the site (site 2) in the pocket between the F and H helices closer to the SH-group and the iron populated. It is site 2 which is responsible for the oxidation. In frozen solutions a Cu-nitroxide distance of about 17 A was determined with human hemoglobin. This distance is consistent with the previously postulated location of the "high affinity" human hemoglobin site near the amino terminus of the beta-chain. At 298 K a much shorter Cu-nitroxide distance of about 7 A was calculated for human hemoglobin. This shorter distance at higher temperature also correlated with a slightly smaller value of g11 and A11 for the Cu(II) ESR spectrum. It is postulated that in solution cross-linking between nitrogenous ligands in the region of the amino terminus of one beta-chain and the carboxyl terminus of the other beta-chain can explain this shorter distance. This cross-link could involve histidine beta-143, which is one of the ligands thought to be also involved in site 1. Binding to the "high-affinity" site in solution thus stabilizes the "low-affinity" site 2 relative to site 1 explaining the reported interaction between the "high-affinity" and "low-affinity" sites.  相似文献   
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号