首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   83篇
  免费   13篇
  2023年   1篇
  2022年   1篇
  2021年   4篇
  2019年   1篇
  2017年   2篇
  2016年   2篇
  2015年   5篇
  2014年   3篇
  2013年   7篇
  2012年   7篇
  2011年   5篇
  2010年   5篇
  2009年   8篇
  2008年   6篇
  2007年   6篇
  2006年   5篇
  2005年   5篇
  2004年   3篇
  2003年   4篇
  2002年   3篇
  2001年   2篇
  2000年   3篇
  1998年   1篇
  1997年   3篇
  1993年   2篇
  1992年   1篇
  1989年   1篇
排序方式: 共有96条查询结果,搜索用时 15 毫秒
31.
His I  Driouich A  Nicol F  Jauneau A  Höfte H 《Planta》2001,212(3):348-358
Korrigan (kor) is a dwarf mutant of Arabidopsis thaliana (L.) Heynh. that is deficient in a membrane-bound endo-1,4-beta-glucanase. The effect of the mutation on the pectin network has been studied in kor by microscopical techniques associated with various probes specific for different classes of pectic polysaccharides. The localisation of native crystalline cellulose was also examined using the cellobiohydrolase I-gold probe. The investigations were focused on the external cell walls of the epidermis, a cell layer that, in a number of plant species, has been shown to be growth limiting. Anionic sites associated with pectic polymers were quantified using the cationic gold probe. Homogalacturonans were quantified using polyclonal anti-polygalacturonic acid/rhamnogalacturonan I antibodies recognising polygalacturonic acid, and monoclonal JIM7 and JIM5 antibodies recognising homogalacturonans with a high or low degree of methyl-esterification, respectively. Rhamnogalacturonans were quantified with two monoclonal antibodies, LM5, recognising beta-1,4 galactan side chains of rhamnogalacturonan I, and CCRCM2. Our results show a marked increase in homogalacturonan epitopes and a decrease in rhamnogalacturonan epitopes in kor compared to the wild type. A substantial decrease in cellobiohydrolase I-gold labelling was also observed in the mutant cell walls. These findings demonstrate that a deficiency in an endo-1,4-beta-glucanase, which is in principle not directly implicated in pectin metabolism, can induce important changes in pectin composition in the primary cell wall. The changes indicate the existence of feedback mechanisms controlling the synthesis and/or deposition of pectic polysaccharides in primary cell walls.  相似文献   
32.
33.
Background and Aims In flowering plants, fertilization relies on the delivery of the sperm cells carried by the pollen tube to the ovule. During the tip growth of the pollen tube, proper assembly of the cell wall polymers is required to maintain the mechanical properties of the cell wall. Xyloglucan (XyG) is a cell wall polymer known for maintaining the wall integrity and thus allowing cell expansion. In most angiosperms, the XyG of somatic cells is fucosylated, except in the Asterid clade (including the Solanaceae), where the fucosyl residues are replaced by arabinose, presumably due to an adaptive and/or selective diversification. However, it has been shown recently that XyG of Nicotiana alata pollen tubes is mostly fucosylated. The objective of the present work was to determine whether such structural differences between somatic and gametophytic cells are a common feature of Nicotiana and Solanum (more precisely tomato) genera.Methods XyGs of pollen tubes of domesticated (Solanum lycopersicum var. cerasiforme and var. Saint-Pierre) and wild (S. pimpinellifolium and S. peruvianum) tomatoes and tobacco (Nicotiana tabacum) were analysed by immunolabelling, oligosaccharide mass profiling and GC-MS analyses.Key Results Pollen tubes from all the species were labelled with the mAb CCRC-M1, a monoclonal antibody that recognizes epitopes associated with fucosylated XyG motifs. Analyses of the cell wall did not highlight major structural differences between previously studied N. alata and N. tabacum XyG. In contrast, XyG of tomato pollen tubes contained fucosylated and arabinosylated motifs. The highest levels of fucosylated XyG were found in pollen tubes from the wild species.Conclusions The results clearly indicate that the male gametophyte (pollen tube) and the sporophyte have structurally different XyG. This suggests that fucosylated XyG may have an important role in the tip growth of pollen tubes, and that they must have a specific set of functional XyG fucosyltransferases, which are yet to be characterized.  相似文献   
34.
35.
36.

Background and Aims

The oomycete Aphanomyces euteiches causes up to 80 % crop loss in pea (Pisum sativum). Aphanomyces euteiches invades the root system leading to a complete arrest of root growth and ultimately to plant death. To date, disease control measures are limited to crop rotation and no resistant pea lines are available. The present study aims to get a deeper understanding of the early oomycete–plant interaction at the tissue and cellular levels.

Methods

Here, the process of root infection by A. euteiches on pea is investigated using flow cytometry and microscopic techniques. Dynamic changes in secondary metabolism are analysed with high-performance liquid chromatography with diode-array detection.

Key Results

Root infection is initiated in the elongation zone but not in the root cap and border cells. Border-cell production is significantly enhanced in response to root inoculation with changes in their size and morphology. The stimulatory effect of A. euteiches on border-cell production is dependent on the number of oospores inoculated. Interestingly, border cells respond to pathogen challenge by increasing the synthesis of the phytoalexin pisatin.

Conclusions

Distinctive responses to A. euteiches inoculation occur at the root tissue level. The findings suggest that root border cells in pea are involved in local defence of the root tip against A. euteiches. Root border cells constitute a convenient quantitative model to measure the molecular and cellular basis of plant–microbe interactions.  相似文献   
37.
Autosomal recessive spastic ataxias are a heterogeneous group of neurodegenerative diseases usually characterized by the early onset of cerebellar and pyramidal signs. With the collaboration of the clinical European and Mediterranean SPATAX network, we identified 15 families with 34 affected members presenting with ataxia and pyramidal signs or spasticity that were not linked to the ARSACS locus on chromosome 13. In an informative consanguineous Moroccan family, we mapped a novel locus, SAX2, to chromosome 17p13. The minimal linked interval lies in a region of 6.1 cM flanked by markers D17S1845/1583 and D17S1854 (Z max = 3.21). Three of the remaining 14 families were also possibly linked to SAX2. The overall clinical picture in nine patients was cerebellar ataxia with pyramidal signs and/or spasticity. Onset occurred before the age of 15 years in two families and in adulthood in the other two. Interestingly, in the largest SAX2 family, the presenting clinical sign was dysarthria, which is not common in other forms of inherited ataxias or spastic ataxias, whereas gait difficulties appeared later. Most cases also showed fasciculations suggesting that both lower and upper motor neurons are involved in the disease process. No mutations were found in the coding exons of KIF1C, ARRB2 and ANKFY1, three genes in the candidate region. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users. Naima Bouslam and Ahmed Bouhouche are co-first authors.  相似文献   
38.
39.

Background

Knowledge of the age-specific prevalence of seroprotection and incidence of seroconversion infection is necessary to complement clinical surveillance data and statistical models. It provides the basis for estimating the future impact of influenza A (H1N1pdm09) and implementing appropriate prevention and response strategies.

Methods

Using a cross-sectional design, two-stage stratified sampling and paired plasma samples, we estimated the age-specific prevalence of a protective level of H1N1pdm09 antibodies in the French adult population before and after the 2009/10 pandemic, and the proportion of those susceptible that seroconverted due to infection, from a single sample of 1,936 blood donors aged 20–70 years in mainland France in June 2010. Samples with a haemagglutination inhibition (HI) titre ≥1∶40 were considered seropositive, and seroconversion due to infection was defined as a 4-fold increase in titre in the absence of H1N1pdm09 vaccination or pre-pandemic seropositivity.

Results

Out of the 1,936 donors, 1,708 were included in the analysis. Seroprevalence before the pandemic was 6.7% (95% CI 5.0, 8.9) with no significant differences by age-group (p = 0.3). Seroprevalence afterwards was 23.0% (95% CI 17.7, 29.3) with 20–29 year olds having a higher level than older groups (p<0.001). Seroconversion due to infection was 12.2% (95% CI 6.9, 20.5). Younger age-group, vaccination against H1N1 and being seropositive before the pandemic were strongly associated with post-pandemic seropositivity.

Conclusions

Before the 2009/2010 winter influenza season, only 6.7% of the French mainland population aged 20–70 had a level of antibodies usually considered protective. During the first pandemic wave, 12.2% of the population seroconverted due to infection and the seroprevalence after the wave rose to 23%, either due to prepandemic seropositivity, infection or vaccination. This relatively low latter figure contributed to an extension of target groups for influenza vaccination for the 2010/2011 season.  相似文献   
40.
Water-deficit stress poses unique challenges to plant cells dependent on a hydrostatic skeleton and a polysaccharide-rich cell wall for growth and development. How the plant cell wall is adapted to loss of water is of interest in developing a general understanding of water stress tolerance in plants and of relevance in strategies related to crop improvement. Drought tolerance involves adaptations to growth under reduced water potential and the concomitant restructuring of the cell wall that allow growth processes to occur at lower water contents. Desiccation tolerance, by contrast, is the evolution of cell walls that are capable of losing the majority of cellular water without suffering permanent and irreversible damage to cell wall structure and polymer organization. This minireview highlights common features and differences between these two water-deficit responses observed in plants, emphasizing the role of the cell wall, while suggesting future research avenues that could benefit fundamental understanding in this area.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号